

Domain Generalization on Efficient Acoustic Scene Classification Using Residual Normalization

Byeonggeun Kim, Seunghan Yang, Jangho Kim, and Simyung Chang Qualcomm AI Research*, Qualcomm Korea YH, Seoul, Republic of Korea

Problem Statement

Task: DCASE2021 challenge, TASK1A: lowcomplexity acoustic scene classification (ASC) with multiple devices.

- ASC is the task of classifying sound scenes such as "airport," "train station," and "urban park" to which user belongs.
- This year, the task becomes more challenging as an ASC model needs to solve two problems simultaneously.
- 1) Data is collected from multiple devices, and the number of samples per device is unbalanced.
- 2) TASK1A restricts the model size.

Contributions

- 1) We introduce a network architecture for ASC that utilizes broadcasted residual learning [1] and achieve higher accuracy while reducing the size by a third of the baseline [2].
- 2) We propose a novel normalization method, Residual Normalization (ResNorm), which can leverage the generalization performance for unseen devices.
- 3) Finally, we describe model compression combined with pruning and quantization to satisfy the model complexity of the task while maintaining performance using **knowledge** distillation.
- 4) Got the 1st place in TASK1A of DCASE2021.

Our Approach

While the BC-ResNet [1] targets human voice, we aim to classify audio scenes. To adapt to the differences in input domains, we make two modifications, i.e., limit the receptive field and use max-pool instead of dilation.

Table 1: BC-ResNet-ASC. Each row is a sequence of one or more identical modules repeated n times with input shape of frequency by time by channel and total time step T.

Input	Operator	n	Channels
$256 \times T \times 1$	conv2d 5x5, stride 2	-	2c
$128 \times T/2 \times 2c$	stage1: BC-ResBlock	2	с
$128 \times T/2 \times c$	max-pool 2x2	-	-
$64 \times T/4 \times c$	stage2: BC-ResBlock	2	1.5c
$64 \times T/4 \times 1.5c$	max-pool 2x2	-	-
$32 \times T/8 \times 1.5c$	stage3: BC-ResBlock	2	2c
32 imes T/8 imes 2c	stage4: BC-ResBlock	3	2.5c
$32 \times T/8 \times 2.5c$	conv2d 1x1	-	num class
$32 \times T/8 \times$ num class	avgpool	-	-
$1 \times 1 \times$ num class		-	-

Table 2: Network Architectures. Compare Top-1 test accuracy (%) on TAU Urban AcousticScenes 2020 Mobile, development dataset.

Network Architecture	#Param	Top-1 Acc. (%)
CP-ResNet, c=64 BC-ResNet-8, num SSN group = 4 BC-ResNet-ASC-8	899k 317k 315k	

Motivation: We observe that differences between audio devices are revealed along frequency dimension rather than channel dimension.

1) Network Architecture

2) Residual Normalization.

Instance Normalization (IN) has been a representative approach to eliminate instancespecific domain discrepancy. Here we use instance normalization by frequency (FreqIN) instead IN.

$$FreqIN(x) = \frac{x - \mu_{nf}}{\sqrt{\sigma_{nf}^2 + \epsilon}},$$
(1)

statistics.

where,
$$\mu_{nf} = \frac{1}{CT} \sum_{c=1}^{C} \sum_{t=1}^{T} x_{ncft},$$

 $\sigma_{nf}^2 = \frac{1}{CT} \sum_{c=1}^{C} \sum_{t=1}^{T} (x_{ncft} - \mu_{nf})^2.$ (2)

Quantitative Results

Table 3: Residual Normalization. We demonstrate how residual normalization affects BC-ResNet-ASC on TAU Urban AcousticScenes 2020 Mobile, development dataset. We show mean and standard deviation of Top-1 test accuracy (%) (averaged over 3 seeds, * averaged over 6 seeds).

Method

BC-ResNet-ASC-1 (Baselin BC-ResNet-ASC-1 + Globa BC-ResNet-ASC-1 + Fixed

BC-ResNet-ASC-1 + ResN w/o ResNorm in Network w/o Shortcut

BC-ResNet-ASC-8 + ResN w/o ResNorm in Network w/o Shortcut

References

[1] B. Kim, S. Chang, J. Lee, and D. Sung, "Broadcasted Resid-ual Learning for Efficient Keyword Spotting," in Proc. Inter-speech 2021, 2021, pp. 4538-4542. [2] K. Koutini, H. Eghbal-zadeh, M. Dorfer, and G. Widmer, "Thereceptive field as a regularizer in deep convolutional neu-ral networks for acoustic scene classification," inEUSIPCO.IEEE, 2019, pp. 1-5.

Figure 1: 2D t-SNE [19] visualization of feature maps of BC-ResNet-ASC-1 stage2 (without ResNorm). Top: Concatenation of frequency-wise mean and standard deviations. Bottom: Concatenations of channel mean and standard deviations. The training samples are separated better by device ID (A to S3) with frequency-wise

FreqIN is task-agnostic and can result to loss of useful information for classification. To compensate for information loss, we add an identity shortcut multiplied by a hyperparameter. We use ResNorm at input and after every stage in the model.

 $ResNorm(x) = \lambda \cdot x + FreqIN(x).$

3) Model Compression

- Magnitude based one-shot unstructured **pruning**
- Quantize all conv layers as an 8-bit while utilize half-precision for others.

Knowledge distillation (KD) compensates the performance drop due to compression.

Table 4: Model compression Compare bitwidth, top-1 test accuracy (%) on Tau Urban AcousticScenes 2020 Mobile, development dataset, and pruning ratio of the models (Average over 6 seeds).

BC-ResNet-ASC-8 + ResNorm, 300 epochs							
Method	Bitwidth	KD	Pruning				
Vanilla model	32	-	-				
Compressed model Compressed model	8, 16 8, 16	\checkmark	0.89 0.89				

	#Param	A	В	С	S 1	S2	S 3	S 4	S 5	S 6	Overall
ne)	8.1k	73.1	61.2	65.3	58.2	57.3	66.2	51.5	51.5	46.3	58.9 ± 0.8
al FreqNorm	8.1k	73.9	60.9	65.5	60.2	57.9	67.9	50.2	54.3	49.4	60.0 ± 0.9
I PCEN	8.1k	68.0	60.4	57.2	64.0	63.0	66.2	62.3	61.8	56.5	62.2 ± 0.8
Norm	8.1k	76.4	65.1	68.3	66.0	62.2	69.7	63.0	63.0	58.3	$*65.8\pm0.7$
X	8.1k	75.1	68.9	67.0	66.0	63.9	69.3	63.4	66.9	63.6	$\textbf{67.1} \pm \textbf{0.8}$
	8.1k	68.2	62.1	58.6	64.2	65.3	66.3	65.1	63.8	61.3	63.9 ± 0.7
Norm	315k	81.3	74.4	74.2	75.6	73.1	78.6	73.0	74.0	72.7	$\textbf{*75.2} \pm \textbf{0.4}$
C C	315k	80.8	73.7	73.0	74.0	72.9	77.8	73.3	72.1	71.0	74.3 ± 0.3
	315k	78.3	73.5	69.1	73.8	72.9	75.6	72.2	72.5	71.0	73.2 ± 0.3

(3)

Accuracy 76.3 ± 0.8 75.1 ± 0.9 75.3 ± 0.8

all ± 0.8 ± 0.9 ± 0.8 ± 0.7 **⊢ 0.8** ± 0.7 \pm 0.4 ± 0.3 ± 0.3