

CL4AC: A Contrastive Loss for Audio Captioning

CL Loss

Classifier

Audio-Text Repr

Word Embedding

Network

Xubo Liu^{1*}, Qiushi Huang^{1,2*}, Xinhao Mei¹, Tom Ko², H Lilian Tang¹, Mark D. Plumbley¹ and Wenwu Wang¹

¹University of Surrey ²Southern University of Science and Technology

* The first two authors contributed equally to this work

Introduction

- Automated Audio Captioning (AAC) using natural language to describe the content of an audio clip.
- Training of an AAC model often encounter the problem of data scarcity, which may lead to inaccurate representation between audio and texts.
- To address this issue, we propose a novel encoder-decoder framework: **C**ontrastive **L**oss for **A**udio **C**aptioning (CL4AC).
- In CL4AC, the self-supervision signals derived from the original audio-text paired data are used to exploit the audio-text correspondences by contrasting samples.
- CL4AC can improve the quality of latent representation and the alignment between audio and texts, while trained with limited data.

Contrastive Learning for AAC

• The audio-text representation of paired data are pulled together in the latent space while simultaneously pushing apart clusters of unpaired negative data by Contrastive Learning.

Proposed Framework: CL4AC

r2

CE Loss

Linear Laver + Softmay

- PANNs encoder and Transformer decoder (state-of-the-art).
- Contrastive Loss (CL) is designed to maximize the difference between the audio-text representation of matched audio-caption pair derived from the negative pairs.
- Training objective: y=1 is negative pair, y=0 is matched pair.

PANNs

Encoder

Experiment and Result

- Dataset: Clotho V2, same as that used for DCASE 2021 Challenge Task 6.
- Baseline: Our DCASE Challenge system without using reinforcement learning and transferring learning.
- Captions are generated using greedy search, evaluation metrics are same as those used for DCASE Challenge Task 6.

Model	BLEU1	$BLEU_2$	BLEU ₃	BLEU ₄	$ROUGE_L$	METERO	CIDEr	SPICE	SPIDEr
Baseline	0.550	0.345	0.222	0.139	0.372	0.169	0.356	0.115	0.235
CL4AC	0.553	0.349	0.226	0.143	0.374	0.168	0.368	0.115	0.242

Conclusion

- We demonstrated the first attempt using contrastive learning for audio captioning CL4AC.
- CL4AC can mitigate the data scarcity problem for AAC without introducing large-scale external data.
- Experimental results proved that CL4AC can improve the performance of a baseline that is already strong, while training with limited data.