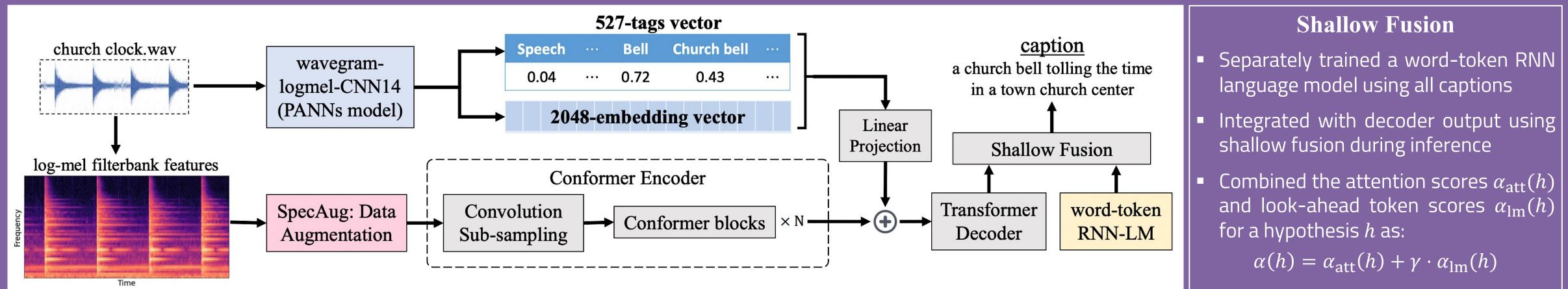

# Carnegie Vellon University

## Workshop on Detection and Classification of Acoustic Scenes and Events DCASE2021 Leveraging State-of-the-art ASR techniques for Audio Captioning Chaitanya Narisetty<sup>1</sup>, Tomoki Hayashi<sup>2</sup>, Ryunosuke Ishizaki<sup>2</sup>, Shinji Watanabe<sup>1</sup>, Kazuya Takeda<sup>2</sup>


## Automated Audio Captioning (AAC)

- Task: Generate descriptive captions for a given audio signal
- Intuition: Similar to automatic speech recognition (ASR), a seq-toseq modeling task focusing on transcription
- Models: CNN, Transformer based encoder-decoder frameworks
- Popular datasets: Clotho and AudioCaps
- Challenge: Limited availability of captioned audio for training





## Methodology



#### **OVERVIEW**

- Log-mel filterbank feature inputs, augmented with SpecAug
- Used PANNs to extract 527-tags & 2048-embedding vectors
- Both inputs are fed into our encoder-decoder framework
- Used a Conformer encoder to encode all the audio features
- Used a Transformer decoder to generate words in captions
- Integrated RNN-LM during inference using shallow fusion

- Encoder: consists of convolution sub-sampling layer Used CNN14, one of several PANNs models, trained on large scale AudioSet dataset with and several Conformer blocks. Each block consists of feed forward module (FFN), multi-head self-attention 527-tags for an audio classification task module (MHSA) and a second FNN, in sequence
- Decoder: consists of several Transformer blocks, where each block consists of MHSA, a linear layer, sandwiched between two normalization layers

<sup>1</sup> Carnegie Mellon University, USA, <sup>2</sup> Nagoya University, Japan

### Contributions

- Leveraged end-to-end ASR techniques and proposed a convolution augmented Transformer (Conformer) model, and performed shallow fusion with an RNN-language model (RNN-LM)
- Introduced pretrained audio neural networks (PANNs) to extract audio tags & embeddings, to be used as auxiliary inputs to our model
- Performed extensive evaluation on the DCASE2021 Task 6 dataset and showed significant improvement over the baseline model
- Expanded on our DCASE2021 challenge report with detailed methodology, key insights and ablation studies
- Released our captioning system for reproducible research https://github.com/chintu619/espnet/tree/aac\_wordtokens/egs/clotho/aac\_word

#### **Encoder-Decoder Framework**

#### **PANNs**

- Used the output 527-tags prediction vector & 2048-embedding vector from last CNN layer
- Both vectors are concatenated, L2 normalized and projected to the same size as attention

#### **Experiments and Results**

- Downsampled the audio in Clotho dataset from 44.1kHz to 16kHz
- Trained on Clotho and AudioCaps datasets (with 46,000 samples)
- Used SpecAug based augmentation with time-warp, frequency and time masking parameters W = 5,  $F_{\rm m} = 30$  and  $T_{\rm m} = 40$
- Used DCASE2021 task 6 challenge baseline system for comparison
- Shallow fusion was performed with scaling parameter  $\gamma$  set to 0.2

|                      | 1     |       |          |       |                | 1      | 1     | -     |        |
|----------------------|-------|-------|----------|-------|----------------|--------|-------|-------|--------|
| Method               |       | BLEU  | -1,2,3,4 |       | <b>ROUGE-L</b> | METEOR | CIDEr | SPICE | SPIDEr |
| Baseline             | 0.389 | 0.136 | 0.055    | 0.015 | 0.262          | 0.074  | 0.084 | 0.033 | 0.054  |
| Conformer            | 0.512 | 0.317 | 0.205    | 0.131 | 0.336          | 0.148  | 0.310 | 0.100 | 0.205  |
| smaller enc-dec      | 0.500 | 0.311 | 0.203    | 0.129 | 0.336          | 0.144  | 0.299 | 0.099 | 0.199  |
| smaller attention    | 0.490 | 0.307 | 0.199    | 0.127 | 0.332          | 0.143  | 0.310 | 0.096 | 0.203  |
| + larger-kernel      | 0.496 | 0.307 | 0.198    | 0.124 | 0.336          | 0.143  | 0.297 | 0.098 | 0.198  |
| + auxiliary features | 0.521 | 0.330 | 0.217    | 0.138 | 0.345          | 0.154  | 0.323 | 0.107 | 0.215  |
| + dev-eval split     | 0.515 | 0.321 | 0.207    | 0.131 | 0.340          | 0.149  | 0.314 | 0.101 | 0.208  |
| Ensemble             | 0.533 | 0.343 | 0.226    | 0.146 | 0.355          | 0.154  | 0.341 | 0.106 | 0.224  |

Table 1: Scores of evaluation metrics for the development-validation split.

| Method               |       | BLEU  | -1,2,3,4 |       | ROUGE-L | METEOR | CIDEr | SPICE | SPIDEr |
|----------------------|-------|-------|----------|-------|---------|--------|-------|-------|--------|
| Baseline             | 0.378 | 0.119 | 0.050    | 0.017 | 0.078   | 0.263  | 0.075 | 0.028 | 0.051  |
| Conformer            | 0.534 | 0.343 | 0.233    | 0.158 | 0.354   | 0.157  | 0.351 | 0.106 | 0.228  |
| smaller enc-dec      | 0.524 | 0.331 | 0.219    | 0.144 | 0.356   | 0.153  | 0.329 | 0.103 | 0.216  |
| smaller attention    | 0.506 | 0.320 | 0.212    | 0.140 | 0.349   | 0.152  | 0.337 | 0.102 | 0.219  |
| + larger-kernel      | 0.518 | 0.330 | 0.224    | 0.150 | 0.355   | 0.154  | 0.340 | 0.105 | 0.223  |
| + auxiliary features | 0.536 | 0.341 | 0.225    | 0.146 | 0.357   | 0.160  | 0.346 | 0.108 | 0.227  |
| + dev-val split      | 0.541 | 0.346 | 0.231    | 0.152 | 0.356   | 0.161  | 0.362 | 0.110 | 0.236  |
| Ensemble             | 0.546 | 0.356 | 0.243    | 0.165 | 0.369   | 0.163  | 0.381 | 0.110 | 0.246  |

|  | Table 2: | Scores | of ev | valuation | metrics | for | the | development-evalu | atio |
|--|----------|--------|-------|-----------|---------|-----|-----|-------------------|------|
|--|----------|--------|-------|-----------|---------|-----|-----|-------------------|------|

| Method                      | CIDEr | SPICE | SPIDEr |                    |       |       |        |
|-----------------------------|-------|-------|--------|--------------------|-------|-------|--------|
|                             |       |       |        | Method             | CIDEr | SPICE | SPIDEr |
| Conformer + auxiliary input | 0.323 | 0.107 | 0.215  |                    |       |       |        |
| - 527-tags                  | 0.325 | 0.102 | 0.214  | Conformer          | 0.310 | 0.100 | 0.205  |
| - 2048-embeddings           | 0.315 | 0.098 | 0.207  | - RNN-LM           | 0.300 | 0.098 | 0.199  |
| Conformer + auxiliary input | 0.346 | 0.109 | 0.227  | Conformer          | 0.351 | 0.106 | 0.228  |
| - 527-tags                  | 0.346 | 0.104 | 0.225  | - RNN-LM           | 0.344 | 0.105 | 0.225  |
| - 2048-embeddings           | 0.342 | 0.106 | 0.224  | <br>Evoluting cont |       |       | _      |

Table 4: Evaluating contribution of RNN-LM towards model performance on development-validation split (top) and developmentevaluation split (bottom).

Table 3: Evaluating contributions of PANNs tags and embeddings towards model performance on development-validation split (top) and development-evaluation split (bottom).

#### Conclusion

Leveraged ASR techniques for automated audio captioning and opened potential research directions for joint modeling of ASR and AAC tasks



ion split.