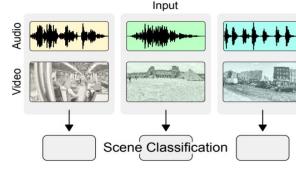
# DCASE 2021 WORKSHOP

### A Multi-Modal Fusion Approach for Audio-Visual Scene Classification


Enhanced by CLIP Variants

{Soichiro Okazaki, Quan Kong, Tomoaki Yoshinaga}\*1 \*1 Lumada Data Science Lab., Hitachi, Ltd., Toyko, Japan



### **1.** Introduction

- > Task: Audio-Visual Scene Classification
- Data: Synchronous 1 sec. audio-video files, train: 86460 files, val: 36450 files, 10 scene classes (e.g. bus, park, tram)



### 2. Approach Overview

- > Ensemble of three domain models:
- [1] Audio models by CNNs, [2] Video models by CNNs,

### [3] Another Video model by CLIP Late Fusion Network Train Phase Test Phase

#### Train Audio/Video Test Audio/Video Ensemble and Audio modality .og-mel CNN Class-wise Post-Processing Variants confidences Log-mel spectrogra Image modality CNN Class-wise Ensemble confidences Variants Post-Processing Image modality (Text-guided image features) CLIP Late Class-wise Fusion Network confidences Final confidences Image fran

# 3. The Effect of CLIP models

> OpenAI CLIP models are used for boosting accuracy

Extracted video features from CLIP variants are concatenated and trained in CLIP late fusion network

> The characteristics of CLIP late fusion network:

✓ Fast training
✓ Lightweight model
✓ Solid performance in

DCASE Scene Classification

Table 1: The architecture of CLIP Late Fusion Network

| RN50x4 (dim:640)                 | RN101 (dim:512)  | ViT-B/32 (dim:512) |  |  |  |  |
|----------------------------------|------------------|--------------------|--|--|--|--|
| Linear(640, 512)                 | Linear(512, 512) | Linear(512, 512)   |  |  |  |  |
| BatchNorm1d(512)                 | BatchNorm1d(512) | BatchNorm1d(512)   |  |  |  |  |
| ReLU()                           | ReLU()           | ReLU()             |  |  |  |  |
| Dropout(p=0.2)                   | Dropout(p=0.2)   | Dropout(p=0.2)     |  |  |  |  |
| Linear(512, 256)                 | Linear(512, 256) | Linear(512, 256)   |  |  |  |  |
| concatenation of 256*3 dimension |                  |                    |  |  |  |  |
| Linear(256*3, 128)               |                  |                    |  |  |  |  |
| Linear(128, 10)                  |                  |                    |  |  |  |  |

Table 4: The effect of CLIP Late Fusion Network (C04). With adding CLIP Late Fusion Network, the recognition performance are boosted in both logloss and accuracy metric for validation dataset.

| Description                  | CLIP | Logloss | Accuracy |  |
|------------------------------|------|---------|----------|--|
| A04/V04 Fusion               | no   | 0.293   | 92.4     |  |
| A04/V04/C04 Fusion           | yes  | 0.238   | 95.8     |  |
| A04/V04 Fusion with p.p.     | no   | 0.205   | 93.0     |  |
| A04/V04/C04 Fusion with p.p. | yes  | 0.149   | 96.1     |  |

# 4. Results (of Validation Set)

Video models have good score than audio models due to short time dataset
Off-the-shelf CLIPs have good score with raw classnames as prompts (C01-03)

| Index | Architecture          | Audio       | Video              | Notes                            | Logloss | Accuracy |
|-------|-----------------------|-------------|--------------------|----------------------------------|---------|----------|
| B01   | OpenL3's model        | log-mel CNN | -                  | Baseline model of Audio-only     | 1.048   | 65.1     |
| A01   | RegNet-6.4F           | log-mel CNN | -                  | Training with 1 sec. audio files | 0.711   | 76.6     |
| A02   | ResNeSt-50d           | log-mel CNN | -                  | Training with 1 sec. audio files | 0.732   | 76.9     |
| A03   | TF-Efficientnet-B1-NS | log-mel CNN | -                  | Training with 1 sec. audio files | 0.821   | 77.2     |
| A04   | A01-A03's models      | log-mel CNN | -                  | Ensemble of A01-A03              | 0.721   | 78.1     |
| B02   | OpenL3's model        | -           | CNN                | Baseline model of Visual-only    | 1.648   | 64.9     |
| V01   | RegNet-6.4F           | -           | CNN                | -                                | 0.328   | 90.0     |
| V02   | ResNeSt-50d           | -           | CNN                | -                                | 0.367   | 91.7     |
| V03   | HRNet-W18             | -           | CNN                | -                                | 0.336   | 90.9     |
| V04   | V01-V03's models      | -           | CNN                | Ensemble of V01-V03              | 0.316   | 92.4     |
| C01   | ResNet-101            | -           | CLIP CNN           | No Training                      | 0.671   | 76.7     |
| C02   | ResNet-50x4           | -           | CLIP CNN           | No Training                      | 0.668   | 74.5     |
| C03   | ViT-B/32              | -           | CLIP ViT           | No Training                      | 0.725   | 72.5     |
| C04   | C01-C03's models      | -           | CLIP CNN&ViT       | Late Fusion of C01-C03           | 0.273   | 90.9     |
| B03   | OpenL3's model        | log-mel CNN | CNN                | Baseline model of Audio-Visual   | 0.658   | 77.0     |
| E01   | A04/V04/C04's models  | log-mel CNN | CNN / CLIP CNN&ViT | Ensemble of A04/V04/C04          | 0.238   | 95.8     |
| E02   | A04/V04/C04's models  | log-mel CNN | CNN / CLIP CNN&ViT | E01 with Post-Processing         | 0.149   | 96.1     |

### **5.** Conclusion

- > The performance of Audio-Visual Scene Classification can be boosted by CLIPs.
- Off-the-shelf CLIP models have good recognition performance (%75% accuracy) for 10 defined scene classes in DCASE 2021 Task1B dataset.
- > CLIP late fusion network is lightweight and can be trained fast.
- CLIP late fusion network have different characteristics from Video models even though they are trained on the same dataset. (\*Details can be seen in our paper)
  Our approach with CLIPs achieved 3<sup>rd</sup> place in DCASE 2021 Task1B Challenge.

