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1. Introduction 2. Approach Overview 3. The Effect of CLIP models

> Task: Audio-Visual Scene Classification » Ensemble of three domain models:
> Data: SVnchronous 1 sec. audio-video [1] AUdio mOdeIS by CNNS, [2] Video mOdEIS by CNNS,
files, train: 86460 files, val: 36450 files, [3] Another Video model by CLIP Late Fusion Network
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> OpenAI CLIP models are Table 1: The architecture of CLIP Late Fusion Network.

used for boosting accu racy ‘ RN50x4 (dim:640) ‘ RNI101 (dim:512) ‘ ViT-B/32 (dim:512) ‘
Linear(640, 512) Linear(512, 512) Linear(512, 512)
BatchNorm1d(512) | BatchNorm1d(512) | BatchNorm1d(512)
ReLU() ReLU() ReLU()
Dropout(p=0.2) Dropout(p=0.2) Dropout(p=0.2)
Linear(512, 256) Linear(512, 256) Linear(512, 256)
concatenation of 256*3 dimension
Linear(256%3, 128)
Linear(128, 10)

> Extracted video features
from CLIP variants are
concatenated and trained
in CLIP late fusion network
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Table 4: The effect of CLIP Late Fusion Network (C04). With
adding CLIP Late Fusion Network, the recognition performance are
boosted in both logloss and accuracy metric for validation dataset.

» The characteristics of
CLIP late fusion network:
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4. Results (of Validation Set)

> Video models have good score than audio models due to short time dataset > The performance of Audio-Visual Scene Classification can be boosted by CLIPs.
> Off-the-shelf CLIPs have good score with raw classnames as prompts (C01-03) > Off-the-shelf CLIP models have good recognition performance (3%75% accuracy)
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A0 ReNeSt-50d Jog-mel CNN ) Training with 1 sec. audio files | 0732 | 769 > CLIP late fusion network have different characteristics from Video models even
A03 | TF-EfficientnetBI-NS | log-mel CNN - Training with 1 sec. audio files | 0.821 77.2 though they are trained on the same dataset. (3¢Details can be seen in our paper)
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