

A Dataset of Dynamic Reverberant Sound Scenes with Directional Interferers for Sound Event Localization and Detection Archontis Politis¹, Sharath Adavanne¹, Daniel Krause¹, Antoine Deleforge², Prerak Srivastava², Tuomas Virtanen¹ ¹Audio Research Group, Tampere University, Finland,

²Universite de Lorraine, CNRS, Inria, Nancy, France

Sound Event Localization and Detection

Sound Event Localization and Detection (**SELD**) attempts to simultaneously detect, classify, and localize sound events, aiming at a more holistic spatiotemporal analysis of the sound scene than sound event detection or sound source localization separately.

Experiments for DCASE2021 dataset

Problem description: to study the influence of the different elements of the spatial sound scenes on the models' performance, we conducted additional tests for different versions of the TAU-NIGENS Spatial Sound Events 2021 dataset.

Figure 1: Sound Event Detection and Localization system output.

SELD datasets

	DCASE2019	DCASE2020	DCASE2021
# rooms	5 rooms	13 rooms	13 rooms
# spatial RIRs/positions	504 discrete positions	~200 spatial trajectories (continuously captured SRIRs)	~200 spatial trajectories (continuously captured SRIRs)
Source-to-receiver distances	1m-2m	1m-5m	1m-5m
Spatial ambient noise	30dB SNR	6-30dB SNR	0-30dB SNR
Moving sources	No	Yes	Yes
Non-target interfering events	No	No	Yes
# polyphony/overlapping events	≤2	≤2	\leq 3 (+ \leq 1 interf. event)
% same-class overlapping events	low	low	high
# target classes	11	14	12

Figure 5: Composition of the different dataset versions.

Results

# event samples	220	~700	~500 (target events) ~400 (interferer eve

Figure 2: Comparison of SELD datasets created for DCASE Challenges. Data based on:

- measured spatial room impulse responses from multiple rooms
- recorded spatial ambient noise from the same rooms
- two spatial formats derived from a spherical microphone array

Figure 3: Exemplary depiction of an emulated recording in the dataset.

Figure 6: Results obtained for different versions of the dataset using the FOA format.

Figure 7: Results obtained for different versions of the dataset using the microphone array format.

Summary and conclusions

This work introduces a new dataset for SELD including polyphony of up to 3 sound events, directional interfering events, and significant number of overlapping same-class events.

DCASE2021 baseline system

The new baseline system uses the single ACCDOA output representation, instead of the earlier multi-task output.

	FOA		MIC					
	LE _{CD}	F1 _{20°}	LE _{CD}	F1 _{20°}				
DCASE2020 dataset								
multi-task	24.3°	44.4%	25.4°	40.4%				
ACCDOA	17.9°	51.9%	19.3°	48.5%				
DCASE2021 dataset								
multi-task	32.1°	24.7%	41.6°	19.1%				
ACCDOA	24.5°	30.7%	30.6°	23.4%				

Figure 4: Results of the baseline with different output representations.

https://www.tuni.fi/en/archontis-politis/

- Reverberation affects negatively all investigated SELD metrics.
- Ambient noise does not seem to significantly impact the results.
- Directional interfering events cause the most severe effect in SELD performance.
- The microphone array format with GCC spatial features achieve significantly worse results than the FOA format with acoustic intensity spatial features.

TAU-NIGENS Spatial Sound Events 2021 https://doi.org/10.5281/zenodo.5476980 DCASE2021 baseline system https://github.com/sharathadavanne/seld-dcase2021

archontis.politis@tuni.fi