Active Learning for Sound Event Classification using Monte-Carlo Dropout and PANN Embeddings
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1| Motivation

e problem: labeling audio material by hand is tedious
e solution: employ active learning to train a machine learning system to classify sound
segments from few provided examples
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Bayesian neural network classifier

probabilistic classifier via a Bayesian neural network
PANN embedding! x of a sound segment
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class probability distribution P(c|x,d)

e dropout layer is kept in stochastic mode at all times
e processing an input x with a random dropout mask d = evaluating a hypothesis from a

2| Overview

We present a dropout-based active learning system for classification of sound segments (DAL),
which utilizes
o transfer learning via PANN! embeddings | 3

e semi-supervised learning via pseudo-labeling |4 || 6

e Bayesian modeling via Monte-Carlo dropout? | 3

2| Dropout-based active learning (DAL) workflow

e start by training a classifier on some initially provided set of labeled segments
e iterate between
— phase |: assign pseudo-labels to some unlabeled segments | 5

and pick one unlabeled

segment to be presented to the annotator | 4

— phase |l train the classifier on labeled and pseudo-labeled segments | 3 || 6
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variational Bayesian posterior?

posterior class distribution P(c|x) = Eq|P(c|x,d)]
predicted class [(x) = argmax_.P(c|x)

Picking segment for manual annotation

e idea: pick the segment where the classifier is most uncertain
e cach hypothesis (= each sampled dropout mask) casts a vote in favor of one class c:

e idea: assign pseudo-labels to those unlabeled segments where the classifier | 3

v(x,d) = argmax_ P(c|x,d)

collecting individual votes results in the vote distribution:

P(c|x) = Eq 0y(x,d),c] With 0 the Kronecker-delta

disagreement is measured as the entropy of the vote distribution:

Hz(x) = =Y P(c|x) - logP(c|x)
the segment with the highest disagreement is picked and presented to the annotator

Pseudo-labeling

Is confident

e classifier is confident iff the probability of the predicted class is above some threshold

P(l|x) > © < assign pseudo-label [ to x (© is a parameter of DAL)
special cases:

— © = 0: always assign pseudo-labels to all unlabeled segments
— © = 1: never assign pseudo-labels

Training

e idea: limit the impact of pseudo-labels to avoid self-amplifying misclassifications
e labeled and pseudo-labeled segments are sampled into minibatches and the cross-entropy

loss is minimized via stochastic gradient descent
chance of a pseudo-labeled segment to be drawn into a minibatch is o= ! times smaller
than the chance of a manually labeled segment (« is a parameter of DAL)
special cases:
— «a = 0: pseudo-labeled segments are not used for training
— «a = 1: pseudo-labeled and labeled segments are weighted the same
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/| Experiments

setup
e dataset: UrbanSound8K

— 8732 sound segments, up to 4 seconds each
— 10 classes: air conditioner, car horn, children playing, dog bark, drilling, engine idling,
gun shot, jackhammer, siren, and street music

e DAL starts with 3 labeled examples for each class (chosen randomly)
e DAL parameters: © =0.5|5; a=0.01|6
e human annotator is simulated by looking up ground-truth labels
e performance metric: accuracy (macro-recall) of the classifier for different labeling budgets
DAL performance sensitivity to © 5/ and o |6
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comparison to benchmarks
e baseline: medoid-based active learning (MAL)?
1. group sound segments into small clusters using MFCC-based features
2. manually annotate medoids of IV largest clusters, where N is the labeling budget
3. propagate labels to other cluster members
4. train SVM on manual & propagated labels
e MAL-PANN, a modification of MAL which uses PANN embeddings!
based features

instead of MFCC-
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8| Conclusions

e Performance of dropout-based active learning depends on the choice of pseudo-labeling
confidence threshold © | 5 | and the rel. weighting of pseudo-labeled segments o | 5 |.

o In our experiments, dropout-based active learning outperforms benchmark
methods especially for low labeling budgets.
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