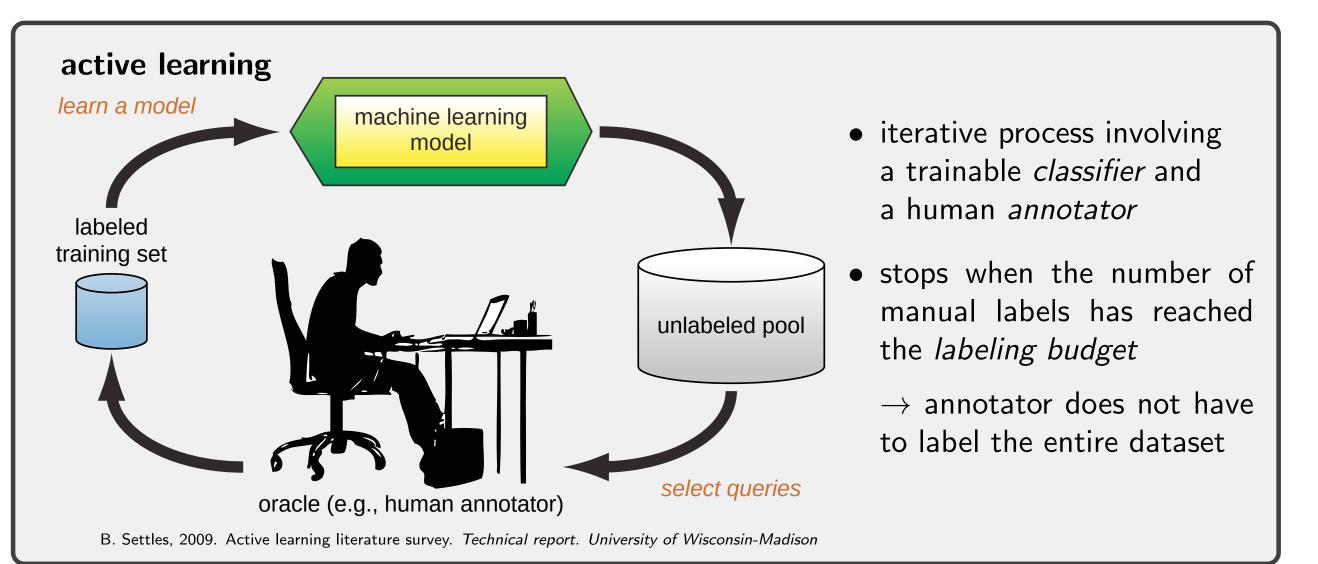
Active Learning for Sound Event Classification using Monte-Carlo Dropout and PANN Embeddings

Stepan Shishkin¹, Danilo Hollosi¹, Simon Doclo^{1,2}, Stefan Goetze³

Fraunhofer Institute for Digital Media Technology IDMT, Division Hearing, Speech and Audio Technology, Oldenburg, Germany

Motivation

- problem: labeling audio material by hand is tedious
- solution: employ active learning to train a machine learning system to classify sound segments from few provided examples



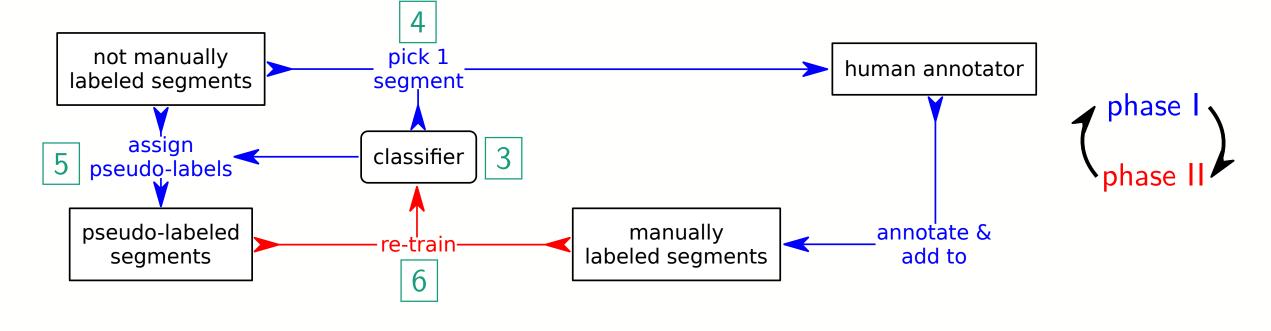
2 Overview

We present a dropout-based active learning system for classification of sound segments (DAL), which utilizes

- transfer learning via PANN¹ embeddings 3
- semi-supervised learning via pseudo-labeling 4 6
- Bayesian modeling via Monte-Carlo dropout² | 3

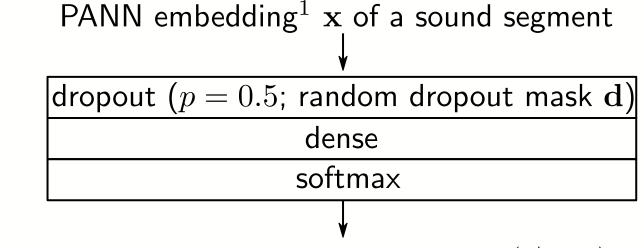
2 Dropout-based active learning (DAL) workflow

- start by training a classifier on some initially provided set of labeled segments
- iterate between
 - phase I: assign pseudo-labels to some unlabeled segments | 5 | and pick one unlabeled segment to be presented to the annotator 4
 - phase II: train the classifier on labeled and pseudo-labeled segments | 3 | 6 |



3 Bayesian neural network classifier

probabilistic classifier via a Bayesian neural network



class probability distribution $P(c|\mathbf{x}, \mathbf{d})$

- dropout layer is kept in stochastic mode at all times
- ullet processing an input ${f x}$ with a random dropout mask ${f d} \equiv$ evaluating a hypothesis from a variational Bayesian posterior²
- posterior class distribution $P(c|\mathbf{x}) = \mathbb{E}_{\mathbf{d}}[P(c|\mathbf{x}, \mathbf{d})]$
- predicted class $\hat{l}(\mathbf{x}) = \operatorname{argmax}_{c} P(c|\mathbf{x})$

4 Picking segment for manual annotation

- idea: pick the segment where the classifier is most uncertain
- each hypothesis (\equiv each sampled dropout mask) casts a *vote* in favor of one class c: $v(\mathbf{x}, \mathbf{d}) = \operatorname{argmax}_c P(c|\mathbf{x}, \mathbf{d})$
- collecting individual votes results in the *vote distribution*: $P(c|\mathbf{x}) = \mathbb{E}_{\mathbf{d}}[\delta_{v(\mathbf{x},\mathbf{d}),c}]$ with δ the Kronecker-delta
- disagreement is measured as the entropy of the vote distribution: $H_{\tilde{P}}(\mathbf{x}) = -\sum_{c} P(c|\mathbf{x}) \cdot \log P(c|\mathbf{x})$
- the segment with the highest disagreement is picked and presented to the annotator

5 Pseudo-labeling

- idea: assign pseudo-labels to those unlabeled segments where the classifier | 3 | is confident
- classifier is confident iff the probability of the predicted class is above some threshold $P(l|\mathbf{x}) > \Theta \Leftrightarrow \text{assign pseudo-label } \hat{l} \text{ to } \mathbf{x} \text{ } (\Theta \text{ is a parameter of DAL})$
- special cases:
 - $-\Theta=0$: always assign pseudo-labels to all unlabeled segments
 - $-\Theta = 1$: never assign pseudo-labels

Training

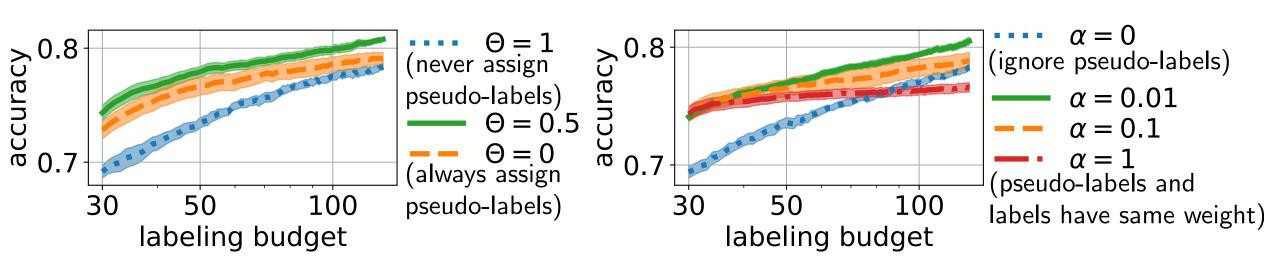
- idea: limit the impact of pseudo-labels to avoid self-amplifying misclassifications
- labeled and pseudo-labeled segments are sampled into minibatches and the cross-entropy loss is minimized via stochastic gradient descent
- ullet chance of a pseudo-labeled segment to be drawn into a minibatch is $lpha^{-1}$ times smaller than the chance of a manually labeled segment (α is a parameter of DAL)
- special cases:
 - $\alpha = 0$: pseudo-labeled segments are not used for training
 - $\alpha=1$: pseudo-labeled and labeled segments are weighted the same

7 Experiments

setup

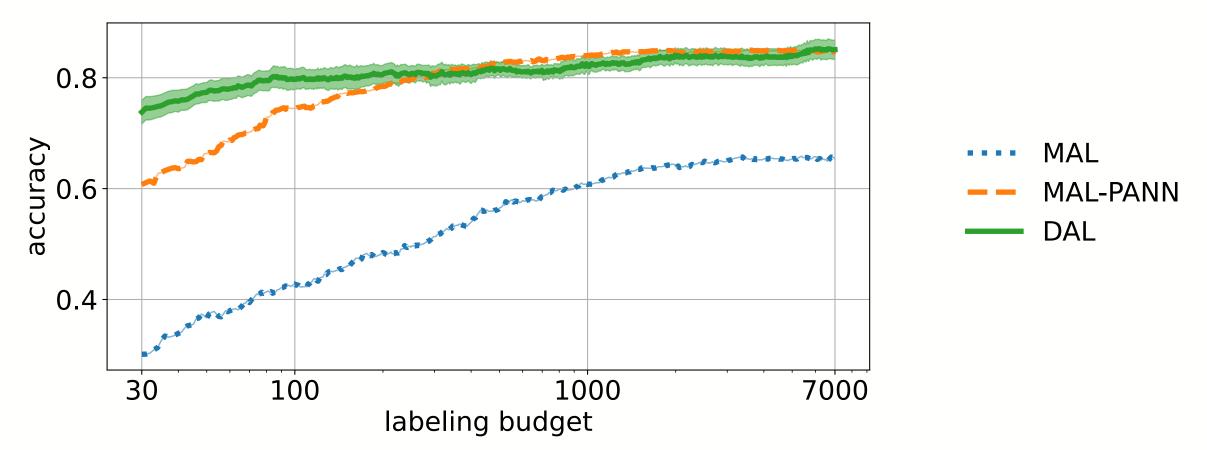
- dataset: UrbanSound8K
 - 8732 sound segments, up to 4 seconds each
 - 10 classes: air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street music
- DAL starts with 3 labeled examples for each class (chosen randomly)
- DAL parameters: $\Theta = 0.5$ 5; $\alpha = 0.01$ 6
- human annotator is simulated by looking up ground-truth labels
- performance metric: accuracy (macro-recall) of the classifier for different labeling budgets

DAL performance sensitivity to Θ 5 and α 6



comparison to benchmarks

- baseline: medoid-based active learning (MAL)³
 - 1. group sound segments into small clusters using MFCC-based features
 - 2. manually annotate medoids of N largest clusters, where N is the labeling budget
 - 3. propagate labels to other cluster members
 - 4. train SVM on manual & propagated labels
- MAL-PANN, a modification of MAL which uses PANN embeddings¹ instead of MFCCbased features



8 Conclusions

- Performance of dropout-based active learning depends on the choice of pseudo-labeling confidence threshold Θ 5 and the rel. weighting of pseudo-labeled segments α 5.
- In our experiments, dropout-based active learning outperforms benchmark methods especially for low labeling budgets.

 2 Gal et al. 2016. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. PMLR 48

³Shuyang et al. 2017. Active learning for sound event classification by clustering unlabeled data. ICASSP