

Automated Audio Captioning

Task description

- Automatic generation of natural language descriptions from audio
- Motivation: Automatic content description applications
- Example: Generation of audio descriptions for the auditorily impaired

The typewriter clacks along, slowly and quickly and when the bell rings the carriage is moved to the next

Dataset

- Extended version of the AAC dataset from last year
- A total of 6974 15-30s audio files
- Five captions for each audio file, ranging from 8 to 20 words
- **Development split**
 - **Development-training split:** 3839 files, 24.0 hours
 - **Development-validation split:** 1045 files, 6.6 hours
 - **Development-testing split:** 1045 files, 6.5 hours
- **Evaluation split:** 1043 files, 6.6 hours

Submissions

- 37 Systems, 13 Teams, 52 Authors, 20 Affiliations
- Primarily evaluated using SPIDEr, a linear combination of the captioning metrics CIDEr and SPICE

Results, Top 10 teams

System	Audio encoder	Decoder
Yuan	PANNs	Transformer
Xu	CNN	RNN
Xinhao	CNN	Transformer
Ye	ResNet38	RNN
Chen	ResNet38 + Memory Transformer	Meshed Transformer
Won	CNN	Transformer
Narisetty	Conformer + 1D/2D CNN	Transformer + RNN Language Model
Labbe	CNN	RNN
Liu	CNN	Transformer
Eren	1D/2D CNN + RNN	RNN
Baseline	RNN	RNN

Summary & Results, Task 6

Samuel Lipping, Konstantinos Drossos, Tuomas Virtanen

Discussion	

Architectures

- The most common encoder types were **CNNs** (33/37), followed by transformers (8/37), RNNs (3/37), and **MLP-mixers** (2/37)
- Two types of transformer encoder: **Memory** transformer (4/37) and Conformer (4/37)
- Transformer encoders were used together with CNNs and a CNN/RNN pair was also used
- Transformers (23/37) and RNNs (14/37) were employed as decoders (23/37)
 - Two types of transformer decoder: **Regular** (22/37) and **meshed** (1/37)
- Learning setup

SPIDEr

0.310

0.296

0.294

0.280

0.262

0.249

0.236

0.221

0.184

0.182

0.012

- Most systems employed **transfer learning** for audio encoding, most commonly **AudioSet** (31/37) and AudioCaps (10/37), with the top 4 systems also using crawled data
- Notably, all but one of the top 10 teams used transfer learning with AudioSet
- All systems were trained with **supervised learning**, while a few also used **reinforcement learning** (4/37)
- All systems used **cross-entropy loss**, one system also used a **sentence-level loss**
- Input data
- Most systems used a **learned or pretrained word** embedding (32/37), while others used one-hot word **encoding** (5/37)
- The top 28 systems relied on **data augmentation**, with some using **more than one** type of augmentation (8/37)

Coordinators

