Fairness and underspecification in acoustic scene classification The case for disaggregated evaluations

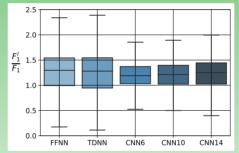
A. Triantafyllopoulos¹², M. Milling², K. Drossos³, B.W. Schuller¹²⁴

¹audEERING, ²EIHW, University of Augsburg, ³Audio Research Group, Tampere University, ⁴GLAM, Imperial College

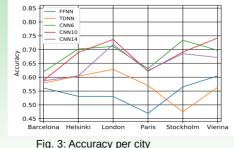
Introduction

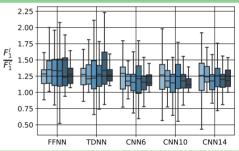
- ASC models being used in critical applications, e.g.:
 - Security
 - Autonomous driving
- ASC models should perform equally across devices/locations
 - Locations correspond to neighbourhoods of diverse social groups
 - Devices targeted at different users
- Underspecification can pose a problem to generalisation
 - Different models behave different across subpopulations
 - Operationalisation becomes harder

Methodology


- Train 5 different architectures
 - 3-layer FFNN
 - TDNN (x-vector system)
 - CNN6, CNN10, CNN14 (VGGish CNNs)
- Investigate 2 different datasets
 - TUT-Urban (different cities and locations)
 - TUT-Mobile (different cities, locations, and devices)
- Utilise disaggregated evaluations
 - Unitary: examine different factors in isolation
 - Intersectional: examine multiple factors jointly

Discussion


- Disaggregated performance showing large variance
 - Should be reported along with aggregated performance
- Models trained on identical settings (data/hparams) show different behaviour on specific subpopulations
 - Model selection for practitioners becomes harder
- Fairness will be an issue for real-life ASC applications
 - Should be addressed with (differential) fairness algorithms


Results

- F_1 ratio (F_1 score at location over F_1 for class) showing a high variance
 - Fairness: different locations will get a different performance (Fig. 1)
 - Underspecification: disaggregation per city reveals different trends for different models (Fig. 2)
 - TDNN has high variance for Stockholm (2nd last) and low variance for Barcelona (1st)
 - CNNs have low variance for Stockholm (2nd last) and high variance for Barcelona (1st)
- Accuracy per city (Fig. 3) showing both fairness and underspecification issues
 - Fairness: accuracy range across different cities ~10%
 - Underspecification: different models showing diverse performance on different subpopulations
 - CNN6 (green) and CNN14 (purple) have lower performance on Vienna vs Stockholm
 - CNN10 (red) has higher performance on Vienna vs Stockholm
 - Disaggregation per device (Fig. 4) showing different behaviour for device/city combinations

Fig. 1: F1 ratio per location

Fig. 2: F_1 ratio per location and city

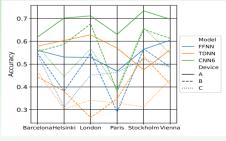


Fig. 4: Accuracy per city and device