

DATASET: TAU AUDIO-VISUAL URBAN SCENES 2021

- 1. Recorded in 12 large European cities: Amsterdam, Barcelona, Helsinki, Lisbon, London, Lyon, Madrid, Milan, Prague, Paris, Stockholm, and Vienna.
- 2. Consists of **10** scene classes: airport, shopping mall (indoor), metro station (underground), pedestrian street, public square, street (traffic), traveling by tram, bus and metro (underground), and urban park.
- 3. **Development set** (34 hours): 10s for each audio and video clip
- 4. Evaluation set (20 hours): 1s for each audio and video clip

EVALUATION METRICS & SUBMISSIONS

Evaluation metrics

- 1. Multiclass cross-entropy (log-loss) (used for system ranking)
- 2. Accuracy (used for comparison with the ASC evaluations from the challenge of previous editions)

Submissions

- 1. We received 43 submissions from 13 teams.
- 2. 15 out of 43 systems have logloss less than 0.34 and accuracy more than 90%.
- 3. 27 out of 43 systems adopt multimodalities approach.

AUDIO-VISUAL SCENE CLASSIFICATION: ANALYSIS OF DCASE 2021 CHALLENGE SUBMISSIONS Shanshan Wang, Toni Heittola, Annamaria Mesaros, Tuomas Virtanen

- Scene Classification based on audio and video input
- Motivation: Humans perceive the world through multiple senses (seeing and hearing)
- Examples: Passing the traffic road by seeing and hearing the surroundings

Rank	Team	Logloss	Accuracy (95% CI)
1	Zhang_IOA_3	0.195	93.8% (93.6 - 93.9)
5	Du_USTC_4	0.221	93.2% (93.0 - 93.4)
9	Okazaki_LDSLVision	0.257	93.5% (93.3 - 93.7)
10	Yang_THU_3	0.279	92.1% (91.9 - 92.3)
16	Hou_UGent_4	0.416	85.6% (85.3 - 85.8)
24	DCASE2021 baseline	0.662	77.1% (76.8 - 77.5)

g 0.5

G	Eľ
	•
	٠
	•
	٠
	•

DIS
Discu
1.
2.
Conc

RESULTS

- Audio Features: Log-mel Spectrogram
- **Multimodality**: Audio + video, audio + video + text
- Large pretrained model: ResNet, VGG, EfficientNet, PANN network
- Data Augmentation: Mixup, Frequency masking, Pitch shifting, Color jitter
- **Transfer Learning**: VGG, PANN trained AudioSet, ResNet trained on ImageNet, places365

SCUSSION AND CONCLUSION

ussion

- Video-based models shows higher performance than audio-based models. However, the joint model performs the best.
- Complex models with larger trainable parameters tend to lead higher performance.

clusion

- 1. The choice of evaluation metrics (log loss or accuracy) does not affect the ranking drastically.
- 2. Performance on development dataset goes in line with the evaluation set, which proves the consistency of the dataset.

