Combining Multiple Distributions based on Sub-Cluster AdaCos for Anomalous Sound Detection under Domain Shifted Conditions

Kevin Wilkinghoff

DCASE Workshop 2021, Barcelona

Introduction

- DCASE challenge task 2¹:
- detect anomalous data using normal training samples only
- source domain: 1000 training samples per machine type/section
- target domain: only 3 training samples per machine type/section
- two main approaches for ASD:
- . autoencoder:
- uses reconstruction error as anomaly score
- assumption: normal data can be reconstructed well, anomalous data cannot
- . discriminative embeddings:
- estimate distribution of normal data
- assumption: information to discriminate classes is sufficient to detect anomalous data

Sub-Cluster AdaCos Loss²

- AdaCos³: angular margin loss with adaptive scale parameter no hyperparameters need to be tuned
- idea:
- multiple mean values learned per class
- use GMM to estimate distribution fo embeddings for each class
- negative log-likelihood can be used as anomaly score
- yields state-of-the-art performance² on DCASE 2020 ASD dataset⁴

$$\hat{P}_{i,j} := \sum_{l \in \mathcal{M}^{(j)}} \frac{\exp(\hat{s} \cdot \cos \theta_{i,l})}{\sum_{k=1}^{CS} \exp(\hat{s} \cdot \cos \theta_{i,k})}$$

Extracting Embeddings

- compute log-Mel spectrograms with 128 bins and standardize them
- train neural network with modified ResNet architecture to extract embeddings using two losses with equal weights:
- classify among sections and machine types
- classify among different attribute information
- only mixup is used for augmenting data

2 Wilkinghoff, Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection, IJCNN 2021

Modified	ResNet	Architecture
Mounica	NCDIACE	Althettale

layer name	structure	output size
input	-	313×128
2D convolution	7×7 , stride= 2	$157\times 64\times 16$
residual block	$\begin{pmatrix} 3 \times 3 \\ 3 \times 3 \end{pmatrix} \times 2$, stride= 1	$78 \times 31 \times 16$
residual block	$\begin{pmatrix} 3 \times 3 \\ 3 \times 3 \end{pmatrix} \times 2$, stride= 1	$39 \times 16 \times 32$
residual block	$\begin{pmatrix} 3 \times 3 \\ 3 \times 3 \end{pmatrix} \times 2$, stride= 1	$20 \times 8 \times 64$
residual block	$\begin{pmatrix} 3 \times 3 \\ 3 \times 3 \end{pmatrix} \times 2$, stride= 1	$10 \times 4 \times 128$
max pooling	10×1 , stride = 1	4×128
flatten	-	512
dense (representation)	linear	128
sub-cluster AdaCos	-	42
sub-cluster AdaCos	-	199

dataset split		P(. s,k)		distribution $P(. a,k)$		$P(. X_{target}(s),k)$		proposed ensemble	
machine type	domain	AUC	pAUC	AUC	pAUC	AUC	pAUC	AUC	pAUC
ToyCar	source	82.49%	65.82%	<u>86.22%</u>	<u>69.39%</u>	-	-	85.04%	69.25%
ToyCar	target	65.02%	58.45%	-	-	<u>76.02%</u>	64.13%	73.21%	<u>64.55%</u>
ToyTrain	source	90.54%	65.60%	<u>91.55%</u>	<u>66.11%</u>	-	-	91.30%	66.01%
ToyTrain	target	54.03%	53.21%	-	-	<u>68.13%</u>	<u>57.29%</u>	66.81%	56.14%
fan	source	<u>81.05%</u>	<u>73.34%</u>	80.55%	72.12%	-	-	80.98%	73.20%
fan	target	67.52%	65.71%	-	-	69.17%	60.20%	<u>69.30%</u>	62.20%
gearbox	source	75.20%	<u>58.63%</u>	75.66%	55.65%	-	-	<u>75.88%</u>	56.46%
gearbox	target	<u>81.02%</u>	57.93%	-	-	75.68%	55.34%	76.64%	55.59%
pump	source	83.63%	70.60%	<u>83.83%</u>	<u>70.83%</u>	-	-	83.70%	70.66%
pump	target	69.90%	<u>60.11%</u>	-	-	70.16%	55.51%	<u>70.52%</u>	56.81%
slide rail	source	91.10%	<u>76.23%</u>	90.97%	75.59%	-	-	<u>91.11%</u>	76.20%
slide rail	target	65.90%	56.17%	-	-	<u>71.63%</u>	54.99%	71.56%	54.94%
valve	source	83.85%	73.84%	<u>89.34%</u>	68.89%	-	-	89.33%	70.77%
valve	target	71.66%	61.64%	-	-	73.31%	59.16%	<u>74.26%</u>	60.00%
all	source	83.67%	<u>68.66%</u>	<u>85.09%</u>	67.81%	-	-	85.00%	68.38%
all	target	67.00%	58.80%	-	-	<u>71.90%</u>	57.93%	71.63%	58.41%

Calculating Anomaly Scores

- source domain:
- one GMM for each section
- another GMM for each different attribute information

$$Z_{\text{source}}(x) := -\max_{k} \log P(x|s(x), k)$$
$$-\max_{k} \max_{a \in a(s(x))} \log P(x|a, k)$$

- for machine type ,valve' also add GMM trained on temporal maxima of log-Mel spectrograms

$$\widetilde{Z}_{\text{source}}(x) := Z_{\text{source}}(x) - \max_{a \in a(s(x))} \log P_{t_{\max}}(t_{\max}(x)|a)$$

target domain:

- one GMM for each section (source domain)
- another GMM with 3 components for target samples

$$Z_{\text{target}}(x) := -\max_{k} \log P(x|s(x), k)$$
$$-\max_{k=1,2,3} \log P(x|X_{\text{target}}(s(x)), k)$$

- **3** Zhang et al, **AdaCos: Adaptively scaling cosine logits** for effectively learning deep face representations, CVPR 2019
- 4 Koizumi et al, **Description and discussion on** DCASE2020 challenge task 2: Unsupervised anomalous sound detection for machine condition monitoring, DCASE 2020

Comparison of Different Distributions on Development Set

Comparison of Different Losses on Development Set

dataset split		sub-cluster Ada		Cos losses for sections and		proposed ensemble	
		sections		file endings			
machine type	domain	AUC	pAUC	AUC	pĂUC	AUC	pAUC
ToyCar	source	74.49%	60.67%	88.58%	<u>71.58%</u>	85.04%	69.25%
ToyCar	target	67.44%	61.55%	75.53%	65.84%	73.21%	64.55%
ToyTrain	source	86.88%	62.00%	91.15%	<u>67.03%</u>	<u>91.30%</u>	66.01%
ToyTrain	target	63.73%	54.18%	<u>68.10%</u>	<u>56.43%</u>	66.81%	56.14%
fan	source	81.66%	73.16%	80.22%	72.60%	80.98%	73.20%
fan	target	69.11%	<u>62.55%</u>	69.00%	61.16%	<u>69.30%</u>	62.20%
gearbox	source	74.97%	57.04%	75.34%	56.16%	75.88%	56.46%
gearbox	target	78.53%	<u>59.53%</u>	72.02%	51.90%	76.64%	55.59%
pump	source	83.44%	69.75%	83.75%	71.35%	83.70%	70.66%
pump	target	68.77%	56.31%	<u>71.30%</u>	56.34%	70.52%	<u>56.81%</u>
slide rail	source	90.44%	74.91%	90.99%	76.43%	<u>91.11%</u>	76.20%
slide rail	target	68.84%	54.44%	<u>73.13%</u>	<u>55.41%</u>	71.56%	54.94%
valve	source	88.90%	72.11%	89.51%	68.95%	89.33%	70.77%
valve	target	<u>75.41%</u>	61.12%	72.36%	56.55%	74.26%	60.00%
all	source	82.54%	66.44%	85.26%	68.58%	85.00%	68.38%
all	target	69.96%	58.34%	71.56%	57.37%	<u>71.63%</u>	<u>58.41%</u>

Comparison to Baseline Systems on Evaluation Set

dataset split		baseline				proposed system			
		autoencoder		MobileNetV2		Propose	a sjoteni		
machine type	domain	AUC	pAUC	AUC	pAUC	AUC	pAUC		
ToyCar	source	76.33%	51.26%	34.32%	53.49%	67.07%	63.05%		
ToyCar	target	58.02%	53.42%	56.62%	58.89%	72.83%	<u>63.77%</u>		
ToyTrain	source	69.89%	55.49%	47.30%	52.49%	70.87%	56.19%		
ToyTrain	target	<u>67.18%</u>	<u>59.78%</u>	39.27%	48.75%	48.38%	52.39%		
fan	source	66.58%	51.36%	70.88%	57.76%	89.07%	69.85%		
fan	target	55.74%	49.68%	59.96%	58.53%	88.89%	70.55%		
gearbox	source	67.81%	55.71%	53.16%	53.47%	61.19%	50.97%		
gearbox	target	63.32%	58.06%	49.27%	49.83%	54.68%	49.40%		
pump	source	62.75%	51.18%	67.12%	60.77%	70.89%	65.52%		
pump	target	54.43%	50.79%	68.85%	59.79%	<u>79.20%</u>	67.81%		
slide rail	source	64.13%	50.91%	73.06%	60.47%	88.06%	64.38%		
slide rail	target	51.65%	51.92%	72.78%	60.94%	85.66%	<u>69.69%</u>		
valve	source	51.56%	50.89%	54.71%	53.03%	73.19%	55.97%		
valve	target	52.19%	49.27%	51.64%	50.10%	54.90%	51.47%		
all	source	64.76%	52.32%	53.82%	55.73%	73.13%	60.21%		
all	target	57.03%	53.01%	54.80%	54.80%	65.76%	59.47%		
all	both	56.3	56.38%		54.77%		64.20%		

Ensembling

- total of 5×4=20 subsystems
- network for extracting embeddings is trained with 2^o to 2⁴ subclusters
- networks are trained for 400 epochs, training is stopped after every 100 epochs
- Ensemble trained a second time, only using one sub-cluster AdaCos loss for sections + machine types
- take mean of both ensembles or best performing ensemble per
- machine type

Conclusions

- future work:
- reduce size of ensemble
- reconstruction loss⁶
- 5 Zhang et al, Mixup: Beyond empirical risk minimization, ICLR

Fraunhofer FKIE

system significantly outperforms baseline systems system ranked 3rd among all teams' submissions

also utilize autoencoder structure by using additional

6 Narita et al, Unsupervised anomalous sound detection using intermediate representation of trained models and metric learning based variational autoencoder, DCASE 2021 Challenge Report

¹ Kawaguchi et al, **Description and discussion on DCASE** 2021 challenge task 2: Unsupervised anomalous sound detection for machine condition monitoring under domain shifted conditions, DCASE 2021