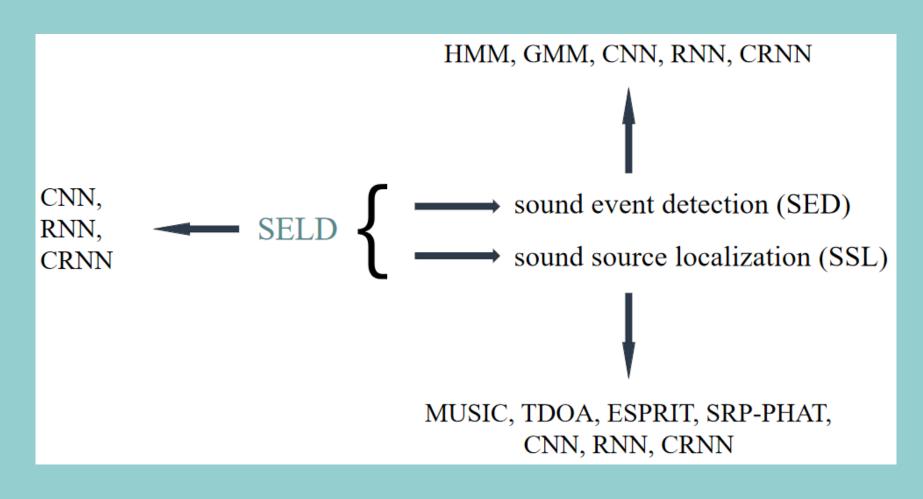


Sound Event Localization and Detection Based on Adaptive Hybrid DCASE 2021 Convolution and Multi-scale Feature Extractor

Workshop

Xinghao Sun, Ying Hu, Xiujuan Zhu, Liang He

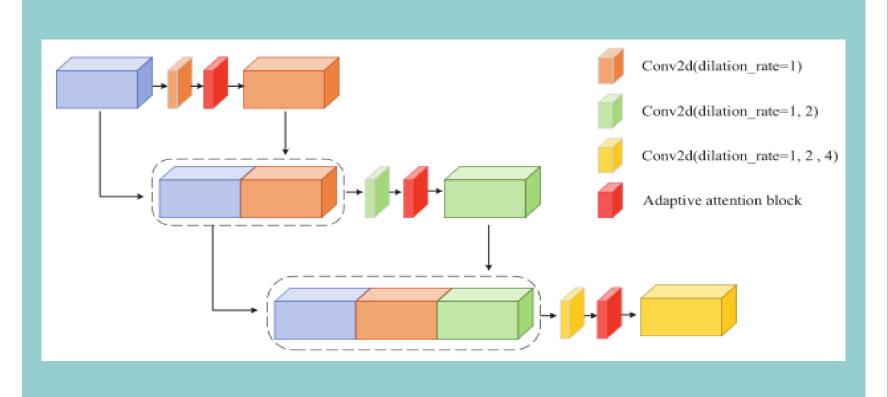

School of Information Science and Engineering, Xinjiang University, Urumqi, China

Background

Sound Event Localization and Detection (SELD)

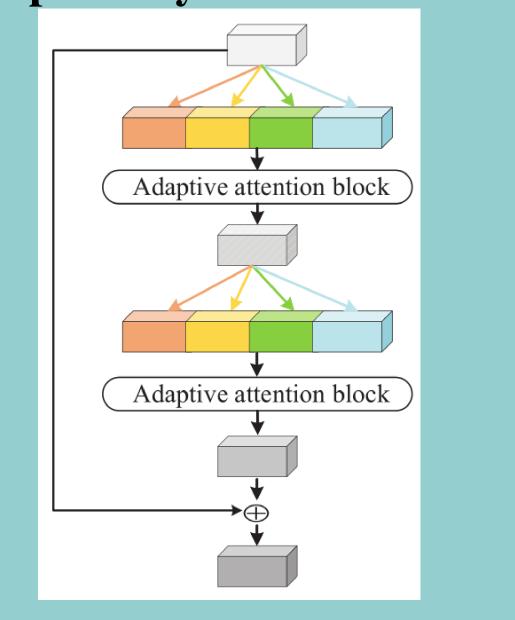
- identify the presence of independent or temporally-overlapped sound sources
- identify which sound class it belongs
- estimate their spatial directions while they are active.

Present method

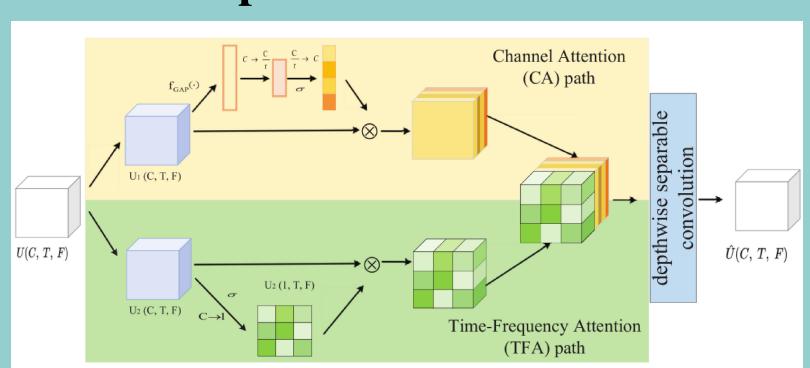


Proposed method

- 1. Multi-scale Feature Extractor
- 2. Adaptive Hybrid Convolution
- 3. Adaptive Attention block


AHConv Multi-scale Extractor AHConv Averagepoolin

1.Multi-scale Feature Extractor



The maximum dilation rate in the last layer depends on the size of the input feature.

2. Adaptive Hybrid Convolution

3.Adaptive Attention block

The parallel structure is applied in adaptive attention block which adaptive mitigates interference between the channel-wise and time-frequency-wise by exploring two different branches.

Table 1: Explore the combination type of AHConv (+A denotes adding adaptive attention block)

The type of combination	ER_{20} °	F _{20°} (%)	LE_{CD}	$LR_{CD}(\%)$
Baseline(3×3)	0.73	30.7	24.5	44.8
1×3,3×1	0.68	42.2	22.6	51.6
(1×3,3×1)+A	0.61	44.7	21.0	54.4
1×5,1×3,3×1,5×1	0.64	43.7	21.9	52.4
$(1\times5,1\times3,3\times1,5\times1)+A$	0.56	46.0	20.7	55.7
$1 \times 7, 1 \times 5, 1 \times 3, 3 \times 1, 5 \times 1, 7 \times 1$	0.66	43.1	23.1	50.7
$(1\times7,1\times5,1\times3,3\times1,5\times1,7\times1)+A$	0.58	44.8	20.8	53.3

Table 2: The results of ablation experiments

Method	ER_{20} °	$F_{20}\circ(\%)$	LE_{CD}	$LR_{CD}(\%)$
baseline	0.73	30.7	24.5	44.8
+Extractor	0.57	49.4	20.0	56.8
+Extractor + AHConv	0.53	55.1	18.8	61.6

Experiment results

Table 3: The results of exploring the validity of depthwise separable convolution (DSConv)

Method	ER_{20} °	F_{20} ° (%)	LE_{CD}	$LR_{CD}(\%)$
Conv(1×1)	0.57	52.6	19.6	58.1
DSConv	0.53	55.1	18.8	61.6

Conclusion

- A SELD method based on Adaptive Hybrid Convolution (AHConv) and multi-scale feature extractor. AHConv is designed to capture the time and frequency dependencies.
- Multi-scale feature extractor is designed to extract the multi-scale feature maps.
- An adaptive attention block embodied in AHConv and multi-scale feature extractor.
- Next we will introduce data augmentation methods to improve the performance of our proposed method.