

DCASE Challenge 2021 Task 4

Sound Event Detection (and Separation) in Domestic Environments

- Determining the temporal location of acoustic events and their category
- Performance measured by two different PSDS (Polyphonic Sound Detection) Score) scenarios

Multi-resolution analysis

Motivation

- Different acoustic events show different temporal and spectral characteristics
- Using multiple time-frequency resolution points should improve SED performance

Resolution points

Taking the parameters of the Baseline System (BS) as reference, we define **5 resolu**tion points for Mel-spectrogram feature extraction, from twice better time resolution (T_{++}) to twice better frequency resolution (F_{++}) .

Resolution	T_{++}	T_+	BS	\mathbf{F}_+	\mathbf{F}_{++}	
Ν	1024	2048	2048	4096	4096	
\mathbf{L}	1024	1536	2048	3072	4096	
\mathbf{R}	128	192	256	384	512	
n _{mel}	64	96	128	192	256	

Table 1. FFT length (N), window length (L), window hop (R) and number of Mel filters (n_{mel}) of resolution points. N, L, and R are reported in samples, using a sample rate $f_s = 16000$ Hz.

Model fusion

- 1. Train a single-resolution SED system for each resolution point (we use the D 2021 Baseline System, available at https://github.com/DCASE-REPO/DESED_task)
- 2. Ensemble the class-wise score sequences of several resolutions through ave fusion, obtaining multi-resolution score sequences
- 3. Process the resulting score sequences (**threshold** and **median filtering**) to obtain PSDS and F_1 results

Multiple feature resolutions for different Polyphonic Sound Detection Score scenarios in DCASE 2021 Task 4

Diego de Benito-Gorrón Sergio Segovia Daniel Ramos Doroteo T. Toledano

AUDIAS Research Group, Universidad Autónoma de Madrid

Figure 1. PSDS curves for single-resolution systems in each scenario

- For PSDS 1 (focused on precise temporal localization of events), T_+ best AUC, \mathbf{F}_{++} obtained the worst AUC
- For PSDS 2 (focused on correct event classification), \mathbf{F}_{++} obtained t T_{++} obtained the worst AUC

Higher time resolution benefits precise temporal detection of events, w frequency resolution helps correct classification.

f		Multi-resolution results										
				DESE	D Valida	DCASE 2021						
		System	Resolutions	PSDS 1	PSDS 2	$F_1(\%)$	PSDS 1	PSDS 2				
	-	3res	F ₊ , BS, T ₊	0.380	0.589	45.0	0.343	0.571				
_		3res-T	BS, T ₊ , T ₊₊	0.386	0.578	46.4	0.363	0.574				
CASE		4res	F ₊₊ , F ₊ , BS, T ₊	0.372	0.600	45.1	0.345	0.571				
		5res	F ₊₊ , F ₊ , BS, T ₊ , T ₊₊	0.386	0.600	46.4	0.361	0.577				
	-	Challen	ge Baseline	0.353	0.553	42.1	0.315	0.547				
erage	Table 2021	2. PSDS sets.	and F_1 results of multi	-resolutior	n systems d	over the	DESED Va	lidation /				

Performance in both PSDS scenarios improves when combining different resolutions.

<audias>

Class-wise analysis

	Alarm b./rin Blender Cat Dishes Dog El.shaver/to Frying Running wa Speech Vacuum clea
80 100	
).	Alarm bell/ Blender Cat Dishes
obtained the	Dog Electric sha Frving
the best AUC,	Running w Speech Vacuum cle
hereas higher	Table 4. Class
	The overall per quency resolut obtains best PS
21 Eval 5 2 F ₁ (%)	

•	т 1(\о)
	42.6
	43.1
	42.2
	42.7
	37.3

Evaluation

	PSDS 1				PSDS 2					
	\mathbf{F}_{++}	\mathbf{F}_+	BS	\mathbf{T}_+	\mathbf{T}_{++}	\mathbf{F}_{++}	\mathbf{F}_+	BS	\mathbf{T}_+	\mathbf{T}_{++}
Alarm b./ring.	0.446	0.512	0.556	0.561	0.567	0.855	0.852	0.836	0.842	0.814
Blender	0.694	0.627	0.677	0.652	0.671	0.851	0.783	0.799	0.782	0.791
Cat	0.378	0.414	0.411	0.439	0.401	0.717	0.705	0.661	0.665	0.622
Dishes	0.107	0.132	0.176	0.172	0.121	0.394	0.376	0.388	0.374	0.389
Dog	0.242	0.272	0.306	0.316	0.295	0.666	0.672	0.661	0.643	0.604
El.shaver/tooth.	0.787	0.798	0.751	0.765	0.687	0.938	0.913	0.885	0.912	0.851
Frying	0.582	0.613	0.635	0.639	0.607	0.771	0.780	0.795	0.795	0.759
Running water	0.481	0.510	0.540	0.548	0.553	0.714	0.714	0.749	0.750	0.755
Speech	0.581	0.603	0.631	0.634	0.620	0.830	0.821	0.834	0.822	0.813
Vacuum cleaner	0.732	0.769	0.771	0.770	0.790	0.892	0.902	0.886	0.879	0.873

s-wise PSDS results of single-resolution systems over the DESED Validation set.

	PSDS 1				PSDS 2			
	3res	3res-T	4res	5res	3res	3res-T	4res	5res
Alarm bell/ringing	0.572	0.584	0.558	0.577	0.858	0.855	0.870	0.870
Blender	0.724	0.744	0.746	0.768	0.840	0.838	0.853	0.856
Cat	0.455	0.472	0.435	0.457	0.701	0.667	0.727	0.712
Dishes	0.202	0.200	0.197	0.214	0.415	0.402	0.435	0.436
Dog	0.319	0.327	0.312	0.324	0.693	0.681	0.701	0.700
Electric shaver/toothbrush	0.740	0.695	0.739	0.714	0.902	0.909	0.918	0.916
Frying	0.677	0.682	0.668	0.674	0.841	0.836	0.829	0.833
Running water	0.567	0.574	0.562	0.569	0.775	0.780	0.771	0.775
Speech	0.661	0.673	0.659	0.666	0.851	0.857	0.852	0.855
Vacuum cleaner	0.893	0.885	0.877	0.890	0.933	0.923	0.932	0.932

s-wise PSDS results of multi-resolution systems over the DESED Validation set.

erformance pattern (higher time resolution for PSDS 1 and higher fretion for PSDS 2) is not observed for every individual class (e.g. Blender SDS 1 with F_{++} , Running water obtains best PSDS 2 with T_{++}).

Conclusions

- Certain resolutions allow to optimize either PSDS 1 (precise temporal localization of events) or **PSDS 2** (correct event classification)
- Multi-resolution improves SED performance for both PSDS settings, and outperformed the Baseline System in the DCASE Challenge 2021 Task 4
- Class-wise analysis shows that each resolution perform better for different event categories

diego.benito@uam.es