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ABSTRACT

Anomaly Sound Detection (ASD) is a popular topic in deep learn-
ing and has attracted the attention of numerous researchers due to
its practical applications within the industry. In the case of unsu-
pervised conditions, how to better discover the inherent consistency
of normal sound clips has become a key issue in ASD. In this pa-
per, we propose a novel training framework that jointly trains two
different feature extractors using contrastive loss to obtain a bet-
ter representation of normal sounds in the latent space. We eval-
uate our framework on the development dataset of DCASE 2021
challenge task 2. Our framework is a combination of two baseline
systems from the challenge: 1) An AutoEncoder-based model and
2) a MobileNetV2-based model. Our approach trains two models,
whereas during inference only model 2) is used. Experimental re-
sults indicate that the MobileNetV2-based model trained under our
proposed training framework exceeds the baseline model in terms of
the official score metric. Since we participated in the challenge and
submitted the system trained on the proposed framework with some
data augmentation methods, we also analyze the results of DCASE
2021 challenge task 2 and discuss the effect of the median filter
as a data augmentation technique. Notably, our proposed approach
achieves the first place for anomaly detection for the machine type
“Fan” with an AUC of 90.68 and a pAUC of 79.99.

Index Terms— Unsupervised anomaly sound detection, au-
toencoder, convolutional nerual network, contrastive learning

1. INTRODUCTION

Anomaly sound detection (ASD) is the task of identifying whether
the sound emitted from an object is normal or anomalous. It has a
wide range of applications, such as machine condition monitoring
and home monitoring.

In this paper, we focus on ASD in an unsupervised setting,
which means that only normal (positive) sound samples can be
accessed during the training phase, while during evaluation ab-
normal (negative) samples need to be ascertained. These settings
commonly occur in real-world scenarios, where diverse anomalous
sounds rarely occur. Therefore, collecting a dataset that contains
exhaustive anomalous patterns is hard.

The main idea of unsupervised ASD is to learn the inherent
consistency of the normal sounds, and then classify samples as
anomalous or normal by the deviation of a sample from normal
sound properties. Early researchers adopted statistic-based methods
such as Hidden Markov Model [1] (HMM) and Gaussian Mixture

Model [2](GMM) to model the probability distribution of normal
sound. Anomalous sounds are usually outside of the normal sound
distribution, thus we can determine whether the sound is abnormal
by its posterior probability. Other researchers used generative mod-
els such as Non-negative Matrix Factorization [3] (NMF) and Au-
toencoder approaches [4]. These models are trained to compress
and reconstruct normal sounds to learn a normal sound’s proper-
ties in latent space. If an abnormal sample is fed into a generative
model, the model will likely produce large reconstruction errors,
meaning that the sample has not been seen during training and thus
is abnormal.

Recently in the DCASE challenges, the classifier-based method
showed promising performance [5, 6, 7]. Supervised training is
made possible since the challenge training data is composed of nor-
mal sounds from different operating conditions with different sec-
tion IDs. Classifier based ASD method uses the section ID as a
label and then performs classification on latent features. Since we
have access to the section ID during inference, a classifier could per-
form anomaly sound detection by identifying misclassified samples
(wrong section ID) as anomaly sounds.

As we can see from previous works, for deep learning based
anomaly sound detection methods, a key issue to improve the per-
formance is to obtain better latent space features of normal sounds,
both for the widely used Autoencoder method and classifier-based
method. Inspired by the recent success of contrastive learning ap-
proaches for self-supervised audio pretraining [8, 9, 10], we aim
to enhance the model’s capability to detect unseen events by link-
ing multiple views together. Our proposed learning framework is
a novel combination of two mainstream anomaly detection models
trained with an additional contrastive loss function.

The paper is structured as follows: In Section 2 we introduce
our proposed learning framework and its components. Further, in
Section 3 details regarding the dataset and experimental setup are
provided. Results are provided in Section 4 and the conclusion is
given in Section 5.

2. PROPOSED APPROACH

During the training phase, our approach jointly trains two indi-
vidual models: an unsupervised AE-based model combined with
a supervised convolutional neural network (CNN). Once the loss
converges, inference can be performed using either model indepen-
dently. The architecture can be seen in Figure 1.
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Figure 1: The proposed architecture used in this work. A spectro-
gram feature is first extracted from the input waveform. Then the
feature is fed into two separate models: an Autoencoder (AE) and a
Convolutional neural network (mainly MobileNetV2). The models
are jointly optimized to reconstruct the input spectrogram, predict
the section label and minimize the contrastive loss between the two
models’ hidden representations.

2.1. Autoencoder-based unsupervised classification

Our AE baseline model is a fully connected neural network with a
bottleneck structure and trained to reconstruct a given input sound
(normal sound). Ideally, a well-trained AE will produce a low error
if a new data sample has been seen during the training phase (nor-
mal sample) and a large error when it encounters unseen anomalous
sounds.

Formally, let x be an input sample and AE be the autoencoder,
our training objective follows:

AE(x) 7→ x̂,

Lunsup(·) = LAE(x) = LMSE(x̂− x),
(1)

where the training loss is chosen to be the mean square error (MSE).

2.2. MobileNet-based supervised classification

Our supervised approach uses the provided section ID as classifica-
tion targets and predicts each section’s probability. Formally, for a
sample x and corresponding one-hot target y, we compute the stan-
dard cross-entropy (CE) loss, as seen in Equation (2).

CNN(x) 7→ ŷ,

Lsup(·) = LCE(ŷ, y) = − 1

N

N∑
i

yi log ŷi,
(2)

where CNN represents the CNN-based classifier and N the number
of samples. Then the anomaly score A(x) is calculated as:

A(x) = log

(
1− ŷi
ŷi

)
, (3)

where ŷi is the softmax output for the correct section. Note that if
the sample x is divided into consecutive segments (x1, x2, ..., xP ),
the anomaly score will be 1

P

∑P
i A(xi).

2.3. Proposed contrastive semi-supervised learning

We train these models with an additional contrastive loss [11]. The
contrastive loss Lcontrastive is added between the hidden representa-
tions of both models (vAE,vCNN) as:

p = vAE,

u = vCNN,

Lcontrastive(·) = −
∑
i

log
exp(〈ui,pi〉/ρ)∑
j 6=i exp(〈ui,pj〉/ρ)

,

(4)

where 〈, 〉 represents inner product, ρ ∈ R is a scalar hyperparame-
ter and p,u ∈ R256 are hidden vector representations obtained by
both models via projection. Concretely speaking, we transform the
output vector of Autoencoder’s bottleneck layer and CNN’s feature
layer into same dimension by linear transformation, then map rep-
resentations to the space where the contrastive loss is applied via a
shared MLP projection layer with one hidden layer. In most cases,
the dimension of the bottleneck layer in the Autoencoder is much
smaller than the dimension of the feature layer in the CNN model
( 8 vs. 1280 in this paper ). We assume that the bottleneck layer
output in the AE tends to represent the general structure of normal
sound clips, while CNN extracted feature represents their micro-
scopic structure. Our approach aims to obtain two different repre-
sentations of a single sample, which is reminiscent of SimCLR [8],
unsupervised data augmentation (UDA) [12] and other semi and
self-supervised approaches.

Ltotal = Lunsup + Lsup + Lcontrastive (5)

The final loss for optimization can be seen in Equation (5).

2.4. Data Augmentation

One of our contributions is the exploration of data augmentation
techniques. Regarding conventional techniques, we explore the use
of Mixup [13] along with time masking [14] and frame-shifting for
model training during the DCASE challenge. Further, our intuition
is that the input audio data contains large amounts of short-time
noise, thus an input feature might contain a surplus of unreliable
information, which can affect the performance of our supervised
training method. We propose a median filtering approach applied
on the input spectrogram feature along the frequency axis aiming to
reduce the influence of distracting noise.

3. EXPERIMENTAL SETUP

Log Mel-spectrogram (LMS) features are chosen as the default
front-end feature for the task. Overall, seven models are trained
in our approach, one for every machine type.

For the supervised CNN training, each 128-filter LMS is ex-
tracted from a 64 ms window with a stride of 32 ms. We follow the
baseline approach by concatenating 64 consecutive frames with a
shift of 8 frames, resulting in an 128 × 64 dimensional input ten-
sor. If segments are shorter than 10 seconds (or 311 samples), we
zero-pad the input to the longest sample within a batch.

Regarding the AE training, we flatten the input tensor to a single
input vector of size 8192 (128 ∗ 64). All experiments are run for
100 epochs, with the learning rate halving every 30 epochs. The
batchsize is set to 32 for training and we set the hyperparameter
ρ = 0.07 for the contrastive loss. Our median filtering approach
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Table 1: Performance of our models in comparison to other participants in the challenge on the official evaluation dataset. Best results are
highlighted in bold.

Model Official Score Fan Gearbox Slider Toy Train Toy Car Pump Valve

AE Baseline 56.375 60.68 65.49 57.22 68.51 65.93 58.30 51.87
MBv2 Baseline 54.770 64.96 51.14 72.92 42.91 42.73 67.97 53.13
1st 66.798 61.01 63.07 83.18 69.15 75.27 86.76 65.36
2nd 64.956 86.48 67.45 83.05 45.60 60.88 85.04 71.49
3rd 64.201 88.98 57.75 86.84 57.50 69.83 74.82 62.74
4th 63.745 66.60 62.53 86.27 61.79 61.70 74.60 62.36
5th 62.593 68.98 67.74 79.88 61.71 73.32 71.87 63.73
6th 62.239 82.65 57.20 83.76 53.43 58.67 85.54 60.54
7th 61.480 87.68 56.56 76.66 48.24 70.60 72.54 60.70
8th 61.186 73.17 64.70 69.89 51.71 68.23 78.65 53.93
Ours best 60.966 90.68 58.00 77.34 47.49 53.81 77.82 53.53

uses a window size of 31 frames (i.e., 1 second) for each filter bank
respectively.

PyTorch [15] was used as the default neural network toolkit1.

3.1. Evaluation metrics

The evaluation metrics used in the challenge is the area under curve
(AUC) and partial-AUC (pAUC) scores respectively [16]. The final
official score Ω is computed as the harmonic mean of the AUC and
pAUC scores.

3.2. Dataset

The data used for this task consists of running sounds of seven
machine types being “ToyCar”, “Fan”, “ToyTrain”,“Valve”, “Gear-
box”, “Silder” and “Pump”, including two recent machine audio
datasets, ToyADMOS [17] and MIMII [18].

Notably, all provided data samples by the challenge authors
have a length of 10 seconds, and each section, as well as machine
type, has a near uniformly distributed duration. The overall data
length is 70 hours of which the large majority belongs to the source
domain.

Model Fan Gearbox Slider Toy Train Toy Car Pump Valve Score

MBv2 60.30 57.43 59.43 51.10 53.60 56.17 55.19 56.01
+ CL 60.61 58.87 60.70 50.92 52.51 56.90 54.38 56.18
+ MF 64.08 65.38 59.83 49.69 55.38 59.50 53.74 57.75
+ CL, MF 64.45 67.16 58.66 51.89 56.15 57.27 53.46 57.99

Table 2: Main results proposed in our work for the DCASE 2021
Task2 challenge on the held-out development dataset in regards to
the main evaluation metric Ω (see [16]). “C” represents adding con-
trastive learning and “M” the addition of median filtering. Note that
a single model is trained for each machine type.

The two models used in this work are described. First, our AE
is the same as the one provided by the challenge baseline. Each
hidden block has 128 units except for the bottleneck block, which
has 8 units. Second, the MobileNetV2 (MBv2) architecture is di-
rectly taken from [19], where our approach differs from the standard
architecture by using global average and max pooling (GAMP) as
our aggregation method compared to the standard global average

1The source code is available at https://github.com/
bibiaaaa/SmallRice_DCASE2021Challenge

pooling (GAP). During training, both the AE and MBv2 models are
jointly optimized given the total loss Equation (5), whereas during
evaluation only the MBv2 model is used.

4. RESULTS

Our model’s performance on the held-out development set is dis-
played in Table 2. As it can be seen, our MBv2 model trained in the
proposed training framework shows improvement over the baseline
model in some machine types such as “Fan” and “Gearbox”.

For the DCASE challenge, we trained an EfficientNet-B0 based
model under our proposed training framework along with median
filter and other data augmentation techniques such as Mixup [13]
and time masking. For the challenge, our method ranked 9th out of
27 participated methods. As shown in Table 1, our method lacks
behind an absolute of 6 % against the winning system.

It is worth mentioning that Table 3 shows that our method per-
formed best on the Fan dataset, especially from the perspective of
pAUC metric, leading by a large margin of around 9% compared
to the 2nd result. We believe that it contributes to the median filter
applied on the log-mel spectrogram along the time axis since it can
erase short-time noise and improve the generalization ability of the
model.

Model Fan (AUC) Fan (pAUC)

AE Baseline 60.68 50.50
MBv2 Baseline 64.96 58.14
2nd 90.22 71.19
3rd 88.98 70.20
4th 88.09 70.84
Ours 90.68 79.99

Table 3: Top 5 best results in the Fan dataset in the challenge. Our
result ranks 1st both in AUC and pAUC.

5. CONCLUSION

This paper proposes a novel contrastive loss training framework
for anomaly sound detection. Experimental results indicate that
the MobileNetV2-based model trained under our proposed training
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framework exceeds the baseline model for some machine types in
the DCASE 2021 challenge task 2, while no additional parameters
are introduced during inference. Notably, our model achieves the
best performance for the “Fan” machine type. We conclude that
anomaly sounds greatly vary between different machine types, thus
finding a universal anomaly sound detection method suitable for
machine condition monitoring is still a problem worthy of research.
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