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ABSTRACT

This paper describes our submission to the DCASE 2021 challenge.
Different from most other approaches, our work focuses on training
a lightweight and well-performing model which can be used in real-
world applications. Compared to the baseline, our model only con-
tains 600k parameters, resulting in a size of 2.7 Mb on disk, making
it viable for applications on low-resource devices such as mobile
phones. As a novelty, our approach uses unsupervised data augmen-
tation (UDA) as the primary consistency criterion, which we show
can achieve competitive performance to the more common mean
teacher paradigm. Our submitted results on the validation set result
in a single model peak performance of 36.91 PSDS-1 and 57.17
PSDS2, outperforming the baseline by an absolute of 2.7 and 5.0
points respectively. The best submitted ensemble system using a 5-
way fusion achieves a PSDS-1 of 38.23 and PSDS-2 of 62.29 on the
validation dataset. Our system ranks 7th in the official DCASE2021
Task4 challenge ranking and is the best performing model without
post-processing while also having the least amount of parameters
(3.4 M) by a large margin. Post-challenge evaluation reveals that
by applying simple median post-processing, our approach achieves
comparable performance to the 5th place.

Index Terms— Semi-supervised learning, Convolutional re-
current neural networks, Weakly supervised learning, unsupervised
domain adaptation.

1. INTRODUCTION

This work focuses on modeling audio signals for sound event de-
tection (SED). The main objective within SED is to categorize (i.e.,
tag) an event, with its respective on- and offsets. A core difficulty
in this task is that multiple sound events can simultaneously occur
during a time window.

One possible method to train a SED model is by using fully su-
pervised labels, where on- and offsets for each event of interest are
provided. However, obtaining fully supervised labels via manual la-
beling is expensive and thus might be a hindrance for SED systems
at scale. To the best of our knowledge, there currently only exists a
single large-scale manual labeled dataset, being Audioset [1], which
provides full annotation for around 200 hours of data.

This paper focuses on semi-supervised sound event detection,
where the provided training data is largely incomplete. Specifically,
the DCASE2021 Task4 challenge focuses on low-cost sound event
detection, where only a small fraction of data (4 hours) is manu-
ally weakly annotated. All other available data sources are either
generated or do not contain labels.

Currently, SED can be used for a variety of applications, query-
based sound retrieval [2, 3], smart cities, and homes [4, 5], voice

activity detection [6, 7] as well as an important component of au-
dio captioning [8, 9]. Most current approaches within SED utilize
neural networks, in particular convolutional neural networks [10]
(CNN), convolutional recurrent neural networks [11] (CRNN) and
other models such as transformers and conformers [12, 13].

CNN models excel at audio tagging [14] and scale with data,
yet falling behind CRNNs and transformer approaches in onset and
offset estimations [15].

1.1. Problem statement

In the following, assume that x is an input (either raw-waveform or
some spectrogram) and ŷ is a predicted label.

Weakly supervised SED models commonly have two outputs:
A clip-level prediction head C(x) 7→ ŷ ∈ {0, 1}E and a frame-
level output F (x) 7→ ŷt ∈ {0, 1}E , t = 1, . . . , T for a frame at
time t with E events. Both of these heads are directly connected
via an aggregation function: C(·) = agg(F (·)), which summarizes
the frame-level predictions to a single clip-level response. When
training in strictly weakly supervised fashion, only the clip-level
prediction head C can be learned, while F needs to be inferred by
the model.
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Figure 1: Inconsistent predictions between the two output heads in
weakly-supervised SED are tackled in this work. The clip-level pre-
diction ŷ estimates the presence of “Speech” and “Vaccum cleaner”,
but the frame-level output ŷt additionally predicts the presence of
“Blender” (in bold) and some other noisy event outputs.

One of the key problems regarding training of weakly super-
vised SED models is that both heads can predict contradictory re-
sults since only errors in C are back-propagated, while F cannot be
directly controlled. For example, the frame head F might predict
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the presence of a sound event e during some time frame, due to fac-
tors such as noise or general similarity of a sound event to another
(e.g., Blender, Vacuum Cleaner), while the clip head C predicts that
e is not present. We show an example of this behavior in Figure 1,
which is a prediction done by our baseline model.

Since in this challenge, the only human-annotated training data
is provided on clip-level, meaning that the clip head C should pro-
vide reliable outputs, additional predictions from F can be con-
sidered as an inconsistency between both heads. In order to miti-
gate the inconsistency problem, we propose a simple learnable clip-
smoothing algorithm.

2. PROPOSED APPROACH

2.1. Learnable clip-smoothing

We propose learnable clip-smoothing to combat the problem of in-
consistent predictions the C and F heads. This technique is identi-
cal to clip-thresholding for weakly supervised SED [11], but since
the DCASE2021 Task4 dataset provides strong frame-level labels,
the clip-smoothing threshold can now be jointly optimized with the
weak labels.

In particular, clip-smoothing is computed as in Equation (1),
where ŷ(t)† is the clip-smoothed output of our model for event e
and ŷt(e) is the model’s frame head output (F ):

ŷ†
t (e) = ŷt(e) ∗ ŷ(e). (1)

This approach should reduce false alarms, since the clip-
level output will squash the frame-level probabilities for any non-
occurring event. Subsequently, by using learnable clip-smoothing,
the head F will only output events which also have a large proba-
bility score (≈ 1) in C.

2.2. Unsupervised data augmentation for consistency training

Many techniques exist to utilize unlabeled data to improve model
performance. Mean Teacher (MT) [16] is a popular technique used
in recent DCASE challenges [17].

In this work we propose the use of unsupervised domain
(UDA) [18] for consistency training in SED. The advantages of
UDA are:

1. In the vision domain, UDA has been seen to outperform
other unsupervised methods such as MT [18].

2. Since only a single model is trained, performance evaluation
is simpler compared to MT, where two models need to be
evaluated.

3. We believe that the main contributing factor of MT is that
it enables the usage of unlabeled data to improve perfor-
mance. Our work shows that unsupervised data augmenta-
tion is equally effective in boosting performance.

The idea of UDA is to compute a consistency loss for unlabeled
data between an augmented and a non-augmented ( or differently
augmented ) sample. To the best of our knowledge, UDA has not
been previously used in SED.

x† = Aug(x),
M(x) 7→ (ŷ, ŷt),

M(x†) 7→ (ŷ†, ŷ†
t ),

LUDA(x) = Lconsistency(ŷ
†, ŷ) + Lconsistency(ŷ

†
t , ŷt).

(2)

The UDA consistency training scheme is defined as in Equa-
tion (2). Here, a sample x is fed through a trainable neural network
M where clip (ŷ) and frame-level (ŷt) predictions are obtained.
The consistency between these predictions (ŷ, ŷt) and the predic-
tions obtained by augmenting the input sample x denoted as x† and
predict (ŷ†, ŷ†

t ) is the training objective. Note that in our work, we
use UDA for both model heads, whereas it would be possible to use
UDA for only weak or strong labels respectively. Also, it is worth
mentioning that gradients are not computed duringM(x).

3. EXPERIMENTAL SETUP

Log Mel-spectrogram (LMS) features are chosen as the default
front-end feature for the task. Each 64-filter LMS is extracted from
a 25 ms window with a stride of 10 ms, resulting in an approxi-
mately 1001× 64 dimensional input tensor. If segments are shorter
than 10 seconds, we zero-pad the input to the longest sample within
a batch. During inference, we use a batch size of 1, such that
padding has no effect on the final evaluation.

All experiments start with a learning rate of 0.001 and are run
for at most 200 epochs, with a linear warmup duration of 20 batches
using the Adam optimizer. The learning rate is halved every 1000
batches. Batch sizes are set to be 32 for weak and synthetic data and
64 for unlabeled data. The available weak training data is split into a
90% training and a 10% cross-validation portion. Cross-validation
is done on the 10% held-out weak subset with the additional syn-
thetic validation data. The training objective is the sum of the weak
F1 and the intersection-F1 score, whereas training is stopped if the
model did not improve for 15 epochs. Pytorch [19] was used as the
neural network back-bone.1.

3.1. Dataset

The dataset used in this work is the DCASE2021 dataset, which
focuses on sound event detection in domestic environments.

The DCASE 2021 dataset is split into a development (used for
training) and an evaluation section. The development set is further
split into training and validation sections. The training section con-
trains three datasets Dweak,Dsyn,Dun, as seen in Equation (3).

Dweak = {(x1, y2), (x2, y2), . . . , (xN , yN )},
Dsyn = {(x1, y2), (x2, y2), . . . , (xM , yM )},
Dun = {x1, . . . , xP }.

(3)

Note that the labels for Dweak are provided on clip-level, i.e., yj ∈
{0, 1}E , j ≤ N , while labels for Dsyn are provided at frame-level,
i.e., yk ∈ {0, 1}ET , k ≤ M for each timestep in T . The unlabeled
dataset contains only samples with target events also seen in the
weak training data.

3.2. Model

Our model named CDur is a lightweight (in terms of parameters)
5-layer CRNN directly taken from the previous work in [11].

ŷ =

∑
t ŷ

2
t∑

t ŷt
(4)

1The source is available at https://github.com/bibiaaaa/
SmallRice_DCASE2021Challenge

36



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

CDur subsamples the time-dimension by a factor of 4 and uses
linear-softmax [20] as its aggregation method defined in Equa-
tion (4). The frame-level output is upsampled by a non-learnable
transformation. For more information about the model, please refer
to [11]. One of the benefits of the proposed model is its size, it only
contains around 600k parameters, making it a lightweight alterna-
tive to the larger baseline model (1.1M parameters). Note however,
that CDur requires slightly more FLOPs (3.36 GFlops) compared to
the baseline (2.97 GFlops).

Three losses are used, one for each respective training data sub-
set. Note that we experimented with additional losses such as asym-
metric focal loss (AFL) [21], but did not observe gains in perfor-
mance.

Lsup = BCE(ŷ, y), {y, ŷ} ∈ Dweak, (5)
Lsyn = BCE(ŷt, yt), {yt, ŷt} ∈ Dsyn, (6)

Lunsup = LUDA(x) = BCE(ŷ†, ŷ) + BCE(ŷt, ŷt), x ∈ Dun. (7)

The model is optimized using the sums of all introduced losses
seen in Equation (8).

Ltot = Lsup + Lsyn + Lunsup (8)
As the default in our work use UDA for both C and F heads.

Augmentation in regards to UDA is applied on raw-wave level,
where the torchaudio2 and torch-audiomentations3 packages are
used. Specifically, we apply random Gain (in range -20, 10 db),
Polarityinversion (with both probability 50%), and time masking
(zeroing a sequence of at most 2 seconds, similar to SpecAug) to an
input sample.

4. RESULTS

We report our results in terms of Event-F1 (E-F1) [22], Intersection-
F1 (I-F1), and the two main challenge metrics denoted as PSDS-1
and PSDS-2 [23]. Additionally, we provide the d-prime d′ score,
which represents our model’s capability to detect the presence of an
event on clip-level and takes values in range d′ ≥ 0, where higher
values are better.

Note that for all results, no post-processing is used and the
Event-F1 score is calculated from the thresholded ŷt > 0.5 frame-
predictions.

Data d′ E-F1 I-F1 PSDS-1 PSDS-2

Weak 2.28 22.71 49.06 15.17 33.47
+ Syn 2.23 30.39 49.63 19.01 28.12
++ Unlabel 2.47 32.11 52.14 26.87 42.19

Table 1: Baseline results using CDur training with amounts of train-
ing data. All results are an average over 5 individual runs on the de-
velopment dataset. Highlighted scores are the main challenge eval-
uation metrics. Higher is better.

The baseline experiments using the proposed CDur model can
be seen in Table 1. The additional data synthetic data seems to de-
crease d′, which likely stems from the mismatch between the syn-
thetic and real data. With the addition of the unlabeled data, how-
ever, d′ largely enhances, since the model now has access to larger

2https://github.com/pytorch/pytorch
3https://github.com/asteroid-team/

torch-audiomentations

amounts of real-world samples. This enhancement is then reflected
on the PSDS-1 and PSDS-2 scores since the clip-smoothing tech-
nique’s filtering capability is now enhanced.

Data d′ E-F1 I-F1 PSDS-1 PSDS-2

Weak 2.27 22.99 49.14 19.98 46.57
+ Syn 2.21 35.31 54.84 29.85 47.34
++ Unlabel 2.50 37.21 57.12 34.41 54.90

Table 2: Development dataset results using the proposed clip-
smoothing with CDur. All results are an average over 5 individual
runs. Highlighted scores are the main challenge evaluation metrics.
Higher is better.

Our results with the proposed clip-smoothing technique can be
observed in Table 2. Comparing to our baseline, clip-smoothing
leads to a large improvement for all metrics, leading to a comparable
performance in terms of PSDS-1 and -2 against the strong baseline.

4.1. Data Augmentation

Two augmentation methods, namely SpecAug [24] and Mixup are
used to enhance performance. The results can be seen in Table 3.
Adding SpecAug to our model training decreases all metrics except
PSDS-2, while the addition of SpecAug + Mixup shows improve-
ments for both PSDS-1 and PSDS-2 scores. In the following, every
experiment denoted as Aug uses SpecAug and Mixup as default.

Aug d′ E-F1 I-F1 PSDS-1 PSDS-2

Base 2.50 37.21 57.12 34.41 54.90
+ SpecAug 2.64 35.68 57.06 32.60 56.26
++ Mixup 2.60 35.76 56.01 34.59 57.11

Table 3: Results with additional data augmentation in form of
SpecAug and Mixup on the development dataset. All results are
an average over 5 individual runs. Highlighted scores are the main
challenge evaluation metrics.

4.2. Ensemble and submissions

The ensemble submissions seen in Table 4 named S1, S2 and S3
are frame-level averaged over the respective single models, which
are:

• Aug, which uses clip-smoothing and additional specaug +
mixup during training (see Table 3).

• Heavy uses much stronger augmentations during UDA than the
default ones. Time Masking with a maximal length of 5s as
well as a 70 % probability to apply volume gain in the range of
-20 to 20 dB.

• MSE uses the mean square error criterion for UDA training
instead of the default BCE.

• WeakShift Uses an additional augmentation via shifting of the
time domain (with rollover) during UDA training. Note that
the training criterion becomes LUDA = BCE(ŷ†, ŷ).

• Sub-8 subsamples the time dimension by a factor of 8, leading
to an output resolution of 80ms instead of 40ms.
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Model d′ E-F1 I-F1 PSDS-1 PSDS-2

Baseline - 40.10 76.60 34.20 52.70
Aug (A) 2.66 36.80 58.94 33.63 57.43
Heavy (B) 2.56 39.02 58.09 35.21 58.00
MSE (C) 2.46 35.08 56.69 34.24 55.07
WeakShift (D) 2.50 39.29 59.02 36.91 57.17
Sub-8 (E) 2.66 36.05 57.17 33.00 59.38
S1 (A+B+C) 2.70 40.89 59.13 37.25 61.99
S2 (S1 + D) 2.70 40.90 59.61 38.23 62.29
S3 (S2 + E) 2.75 41.06 59.71 38.13 62.98

Table 4: Performance for the best single model results on the de-
velopment dataset and the submitted ensemble models. Best results
are highlighted in bold. Ensembles are generated by averaging the
frame-level outputs of each respective model.

Compared to the baseline, our model falls behind in terms of
Intersection-F1 and Event-F1, which is likely due to our neglect of
post-processing methods largely affecting those metrics. However,
in terms of PSDS, our model largely outperforms the baseline ap-
proach by an absolute of at least 3 and 9 points, respectively. Our
submissions to the challenge include the ensemble systems S1, S2
and S3 as well as our best performing single model (D).

4.3. Challenge results

After the challenge ended, the results of all teams participated were
published. Within the challenge, our method scored the 7th over-
all place in terms of the averaged PSDS-1 and PSDS-2 metrics as
well as the average of both metrics (PSDS-Avg). A comparison of
our method against other challenge participants can be seen in Ta-
ble 5. Notably, our approach is the best performing approach in the
challenge without requiring post-processing.

Model PSDS-1 PSDS-2 PSDS-Avg Post

Baseline 31.5 54.7 43.1 Median
1st 45.2 74.6 59.9

Median

2nd 44.2 67.4 55.8
3rd 39.9 71.5 55.7
3rd 41.9 68.6 55.2
4th 41.6 63.7 52.6
5th 41.3 58.6 49.9
6th 37.0 62.6 49.8
S1 36.1 58.4 47.2

-S2 37.3 58.5 47.9
S3 37.0 59.6 48.3
S4 (Single) 33.9 50.4 42.1
Ours (best) 37.3 59.6 48.4 -

Table 5: Performance of our models in comparison to other partici-
pants in the challenge on the official evaluation dataset. Best mod-
els with postprocessing (Post) using median filtering and without
are displayed in bold.

4.4. Post-challenge post-processing

Since all other participants opt to use median filtering, we also pro-
vide our results on the development set in comparison to theirs using

an adaptive window size for each event. The window sizes are es-
timated from the validation dataset, where one-third of each event’s
average duration is used as the window sizes.

Model #Param (M) PSDS-1 PSDS-2 Score Single?

1st 14.3 45.2 74.6 1.40 N
2nd 20.2 44.2 67.4 1.32 Y
3rd 79.2 33.9 71.5 1.29 N
3rd 50.0 41.9 68.6 1.29 N
4th 119.8 41.6 63.7 1.24 N
S3 3.4 38.2 65.4 1.20 Y
S2 2.7 37.9 64.3 1.19 Y
5th 8.5 41.3 58.6 1.19 Y
S1 2.0 36.1 64.3 1.16 Y
6th 6.7 37.0 62.6 1.16 Y

Table 6: Post-challenge performance of our models in comparison
to other participants using median post-processing on the evaluation
set. “Single” refers to whether the results stem from a single sub-
mission or two different submissions. “Score” represents the chal-
lenge ranking score, where 1.0 is the challenge baseline. If multiple
models were used, the reported parameter count represent the sum
of each individual model’s parameters.

As we can see from the results in Table 6, our model compares
favorably against other participants in terms of parameter count to
performance ratio4. Further, the submission S3 achieves a notice-
able boost of 2 and 5 points in terms of PSDS-1 and PSDS-2 scores
respectively on the evaluation dataset when using median filtering.
Within the top-performing submissions, our proposed method is the
most lightweight by a large margin as seen in Table 6, achieving
comparable performance to the 4th place, while using only a frac-
tion (2 %) of its parameters. Finally, our method ranks overall sec-
ond if we only compare scores obtained by a single submission i.e.,
a model which performs well in terms of both PSDS-1 and PSDS-2
scores.

5. CONCLUSION

This paper proposes our submission to the DCASE2021 Task4 chal-
lenge. The approach uses clip-smoothing in combination with a
small parameter model to outperform the provided baseline in terms
of PSDS-1 and PSDS-2 scores. Our best single model achieves a
PSDS-1 of 36.91 and 33.9 and a PSDS-2 of 57.17 and 50.4 on the
validation and evaluation datasets, respectively. Moreover, our 4-
model ensemble approach achieves a PSDS-1 of 38.23 and a PSDS-
2 of 62.29, significantly outperforming the challenge baseline by an
absolute of 4.03 and 9.6 points respectively. In terms of the offi-
cial evaluation, our method scored seventh place, while being the
only top-ranking method not using post-processing. When utilizing
common adaptive median post-processing our approach achieves
comparable performance to the 5th place, while having the fewest
parameters amongst all top-ranked methods.
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