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ABSTRACT
Acoustic scene classification (ASC) has seen tremendous progress
from the combined use of convolutional neural networks (CNNs)
and signal processing strategies. In this paper, we investigate the
use of two common feature representations within the audio un-
derstanding domain, the raw waveform and Mel-spectrogram, and
measure their degree of complementarity when using both represen-
tations for feature fusion. We introduce a new model paradigm for
acoustic scene classification by fusing features learned from Mel-
spectrograms and the raw waveform from separate feature extrac-
tion branches. Our experimental results show that our proposed
fusion model significantly outperforms the baseline audio-only sub-
network on the DCASE 2021 Challenge Task 1B (increase of 5.7%
in accuracy and a 12.7% reduction in loss). We further show that
the learned features of raw waveforms and Mel-spectrograms are
indeed complementary to each other and that there is a consistent
improvement in classification performance over models trained on
Mel-spectrograms or waveforms alone.

Index Terms— Audio classification, Acoustic scene classifica-
tion, Feature fusion, Multi-modal features.

1. INTRODUCTION

Mel-spectrograms are the de-facto audio feature representation and
have been widely used throughout the history of audio understand-
ing [1]. Mel-spectrograms are created by calculating the short-
time fourier transform (STFT) of an audio signal, then passing the
STFT frequency responses through band-pass filters spaced on the
Mel(logarithmic)-scale and often further passed through a logarith-
mic compression to replicate the human’s non-linear perception of
signal pitch and loudness, respectively.

With the advent of deep neural networks, many methods have
been introduced that perform audio understanding tasks such as
ASC, audio tagging, and sound event detection by using Mel-
spectrogram representations of audio as the input to a convolutional
neural network [2, 3]. Researchers have also explored other fea-
ture representations such as the gammatone and Constant-Q (CQT)
spectrogram, and Mel Frequency Cepstrum Coefficients (MFCC)
[4, 5]. [6] and found that fusing these representations allows for a
network to learn complementary features, creating a stronger model
for ASC.

In parallel, other works have utilized the raw waveform directly
as input into neural networks, bypassing the need for hand crafted
features [7, 8]. Waveform-based networks are trained end-to-end,

while networks that utilize spectrograms need to create these hand
crafted features that may often be sub-optimal for the given task.
Regardless, many state of the art methods in ASC, speaker recogni-
tion, sound event detection, and other tasks still utilize spectrogram
representations [9, 10]. Further, [11] introduced a fully learnable
variation of spectrogram representations, where they are trained
end-to-end to automatically find an optimized representation.

As a result, there is still no clear consensus as to the best feature
representation that can perform strongly across various audio un-
derstanding tasks. Researchers are now looking at hybrid methods
that use both waveform and spectrogram representations in a fusion
setting. [8, 12] perform early feature map fusion of waveform and
spectrogram features that are passed through convolutional layers
for audio tagging and environmental sound classification. [13, 14]
propose a decision-level ensembling of multiple models that uti-
lize raw waveforms and Mel-spectrograms for environmental sound
classification and ASC. Although these works have shown classi-
fication performance improvements using waveforms and spectro-
grams, they do not deeply explore the degree of complementarity
and effects of fusing these features together.

In this paper, we investigate waveform and Mel-spectrogram
feature fusion and propose a new ASC model that learns comple-
mentary features from both modalities using a more effective fusion
method. We evaluate our proposed model using the DCASE 2021
Challenge Task 1B dataset to prove the effectiveness and comple-
mentarity of waveform and Mel-spectrogram feature fusion. Our
work is reproducible and the code is publicly available.1

2. PROPOSED METHOD

To investigate and understand the complementarity between learn-
ing features from Mel-spectrograms and raw waveforms, we de-
signed a fusion model based on two CNN feature extractors, and
a unified classification layer. Figure 1 illustrates the design of our
model. The spectrogram branch, Fs, is comprised of repeating 2D
CNN blocks followed by a max pooling operation. The CNN blocks
contain a convolution layer using a kernel size of 3 × 3, followed
by a batch normalization and a Leaky ReLU nonlinear activation.

The waveform branch, Fw, is of a similar structure, however
the two-dimensional max pooling and convolutional layers are re-
placed with one-dimensional kernels of size 8 and 7, respectively.
In addition, the first convolutional layer in the waveform branch are
parameterized to Sinc functions, as described in [15].

1https://github.com/denfed/wave-spec-fusion
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Table 1: Detailed overview of proposed model design.
Spectrogram Branch Fs

Input shape [128,188]
Filter responses 32, 64, 128, 256
Global average pooling output ls 〈1024〉
Waveform Branch Fw

Input shape [48000]
Filter responses 32, 64, 128, 256
Global average pooling output lw 〈1024〉
Classification Layers Fc

Input shape (lw + ls) 〈1024〉
Dense layer outputs 512, 256, 10
Output classes 10

As both branches are working with different-sized input data,
the feature responses may vary in size. We utilize global average
pooling layers to condense both waveform and spectrogram features
into a vector of 1024 units, denoted by lw and ls, respectively.

Feature fusion of both feature extraction branches is accom-
plished at the latent representation level, where features for both
the waveform and spectrogram branch are extracted independently
and then fused together into a unified representation. We hypoth-
esize that this style of late fusion allows each feature extractor to
extract more complementary features compared to related methods
that fuse feature maps in early layers. In addition, late fusion may
exploit more feature inter-dependencies of each modality compared
to score fusion and ensembling methods that average independent
model outputs.

Fusion is accomplished using element-wise summation such
that the final latent representation (lw + ls) has the same shape as
its constituents. The classification layers, Fc, take (lw+ ls) as input
and perform the final classification using repeating dense blocks, as
shown in Figure 1. We use dropout layers with p = 0.3, followed
by linear layers, a Leaky ReLU activation, and batch normalization.
The classification ĉ of the set of classes c ∈ C of an audio sample
with its waveform xw and Mel-spectrogram xs can be described as:

ĉ(xw,xs) = argmax
c∈C

Fc(Fw(xw) + Fs(xs)) (1)

Table 1 describes in detail the configuration of both feature ex-
traction branches and the final classification layers. For our experi-
ments, we utilize three variations of the described model to investi-
gate modality complementarity:

Spectrogram sub-network: The spectrogram branch in Fig-
ure 1 is used independently with the classification layers, without
the waveform branch. In this model, training is conducted only us-
ing Mel-spectrograms, omitting Fw(xw) from (1).

Waveform sub-network: The waveform branch in Figure 1 is
used independently with the classification layers, without the spec-
trogram branch. In this model, training is conducted only using raw
waveforms, omitting Fs(xs) from (1).

Fusion model: Both the spectrogram and waveform branch
are trained end-to-end with their respective inputs. The latent rep-
resentations of each branch are fused together for classification.

3. TRAINING CONFIGURATION

All models are trained using the SGD optimizer paired with the
one-cycle learning rate scheduler described in [16]. The one-cycle

Figure 1: Illustration of the proposed fusion model.

learning rate scheduler anneals an initial learning rate to a maxi-
mum value, then anneals it back to the initial learning rate, over the
entire training procedure. [17] showed that this procedure leads to
faster training times. In addition, using large learning rates for a
portion of the training procedure acts as a form of regularization.
We experimented with various learning rates and found that a max
learning rate of 0.008 for the one-cycle scheduler works best for the
proposed models. Training batch size is set to 128 and the models
are trained for 50 epochs. The models were trained on an RTX 6000
GPU with the most complex model taking 1.5 hours to fully train.
We train our models and conduct our experiments using the pro-
vided training and validation split of the Task 1B challenge dataset.

3.1. Dataset: DCASE 2021 Challenge Task 1B, Audio-Visual
Scene Classification

Task 1B is based on the TAU Audio-Visual Urban Scenes 2021
dataset, a dataset containing synchronized audio and video record-
ings from 12 European cities in 10 different scenes. Audio is
recorded using a Soundman OKM II Klassik/studio A3 microphone
paired with a Zoom F8 audio recorder, sampled at 48kHz at a 24-
bit resolution. Video is recorded using a GoPro Hero5 Session. The
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Table 2: Kernel parameterization performance.
Parameterization Accuracy % Log Loss
Unparameterized (normal) 61.87 1.047
Sinc parameterization [15] 64.79 1.045

Table 3: Model performance compared to challenge baseline.
Model Accuracy % Log Loss # Params
Audio baseline [20] 65.1 1.048 -
Waveform sub-network 64.79 1.045 1.0M
Spectrogram sub-network 66.46 1.072 1.1M
Fusion Model 70.78 0.915 1.4M

dataset contains 12,292 10-second samples of each modality spread
across the 10 scenes. The provided train/validation split consists of
8,646 samples in the training set and 3,645 samples in the validation
set [18]. In this paper, we focus on the audio portion of the dataset
only, excluding using videos for scene classification.

3.2. Data Preprocessing

We input the raw waveform and its generated Mel-spectrogram into
their respective feature extractors. According to the Task 1B rules,
we split the development dataset samples into 1 second audio files to
perform classification at the 1 second level. This brings the training
dataset to 86,460 samples and the validation dataset to 36,450 sam-
ples. Audio files are sampled at 48kHz and therefore have a sample
length of [48000]. In addition, the audio waveforms are scaled to the
range [0, 1]. Mel-spectrograms are generated using 128 frequency
bins, a hop length of 256 samples, and a Hann window size of 2048
samples, creating a final size of [128×188]. The Mel-spectrograms
are also passed through a logarithmic compression and then normal-
ized at an instance level using Z-Score normalization such that each
sample has a mean of 0 and unit standard deviation.

3.3. Data Augmentation

For data augmentations, we utilize Mixup [19] and time shifting for
all experiments. During training, Mixup has a 50% probability of
being used for each batch and time shifting is applied to every batch.
For Mixup, we select α = 0.2 and apply it to both the sub-networks
and fusion model. For the fusion model, Mixup is performed evenly
across the waveform and spectrogram such that two audio samples’
waveform and spectrogram are mixed together at the same mixing
ratio. Time shifting shifts the waveform and spectrogram along the
time axis, where overrun samples are shifted to the opposite end of
the input. We time shift randomly from 0% to 50% of the time axis
size for both the waveform and spectrogram. For the fusion model,
time shifting is applied independently to the modalities, such that
both the waveform and spectrogram may be shifted by varying de-
grees. We experimented with various configurations and found that
this configuration achieves the highest classification performance,
however further research should be conducted on the effects of con-
sistent and inconsistent data augmentations between each modality.

4. EXPERIMENTAL RESULTS

4.1. Waveform Kernel Parameterizations

SincNet [15] introduced the use of parameterized Sinc filters for
speech recognition, where the kernels of the first convolutional layer
of a model utilizing waveforms are replaced with kernels parame-
terized to the Sinc function. Works such as [14] have applied these
filters for ASC and found Sinc filters to improve ASC performance.

Table 4: Fusion method comparisons.
Model Accuracy % Log Loss # Params
Wavegram-Logmel-CNN 68.35 1.063 80.2M
Decision fusion 68.65 0.955 2.0M
Decision ensemble 70.47 0.845 2.0M
Proposed late fusion 70.78 0.915 1.4M

Table 2 shows model performance when replacing the first con-
volutional layer of the waveform branch with parameterized Sinc
kernels instead of an unparameterized, fully learnable kernel. As
shown, using sinc kernels outperforms unparameterized kernels.
We hypothesize that the initialization of the sinc filters to mirror the
distribution of the Mel-scale, as described in [15], are a more op-
timal initialization compared to conventional kernel initializations.
In addition, the Sinc kernels are less prone to overfitting as they are
constrained to the Sinc function [11]. Using Sinc filters also allows
us to reduce model complexity, as two frequency cutoff values are
learned per kernel instead of N parameters of a size N kernel.

4.2. Waveform and Spectrogram Feature Fusion

Table 3 shows the classification performance of the provided Task
1B baseline model compared to the three different model variations
proposed. The waveform sub-network is not able to outperform the
baseline while the spectrogram sub-network performs slightly better
than the baseline in accuracy. The fusion model outperforms both
the baseline and models trained on single modalities with a 5.7%
improvement in accuracy and a reduction of .13 in loss over the
baseline. Furthermore, we see that the fusion model outperforms
the spectrogram sub-network by 4.3% in accuracy and a .16 reduc-
tion in loss. This improvement shows that there are features being
learned within the raw waveform that are complementary to fea-
tures being learned from the Mel-spectrogram, resulting in a more
discriminative classification model.

4.3. Feature Fusion Design

We perform a comparison with other fusion paradigms to better un-
derstand its significance in fusing waveform and spectrogram fea-
tures. We compare our method against the Wavegram-Logmel-
CNN, a popular acoustic classification model introduced by [12]
that performs early feature map fusion on the waveform and spec-
trogram. We train the Wavegram-Logmel-CNN using the train-
ing configuration described in [12]. The same data preprocessing
is used as described in section 3.2, however the spectrogram hop
length is changed to 320 samples to fit the structure of the model.
In addition, we compare the proposed late fusion design against a
decision fusion and ensembling method. Instead of latent vector
fusion, we fuse the independent sub-network’s predictions at the
decision level by averaging predictions together. Comparing to (1),
the decision fusion classification resembles:

ĉ(xw,xs) = argmax
c∈C

1

2
(Fcw (Fw(xw)) + Fcs(Fs(xs))) (2)

where Fcw and Fcs depict the waveform and spectrogram subnet-
work’s classification layers, respectively. We train this decision fu-
sion model using the same configuration as the proposed late fusion
model. In addition, we compare the fusion methods against an en-
semble of the independently trained sub-networks, using decision
averaging described in (2).

As shown in Table 4, the proposed late fusion model outper-
forms the Wavegram-Logmel-CNN with significantly fewer param-
eters, in addition outperforming the decision fusion and ensemble
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Table 5: Comparison of feature fusion methods.
Fusion Method Accuracy % Log Loss # Params
Element-wise sum 70.78 0.915 1.4M
Concatenation 70.85 0.924 1.9M
MFB [21] 70.13 0.943 7.6M

Table 6: Feature branch removal ablation study.
Model Accuracy % Log Loss
Spectrogram sub-network 66.46 1.072
Fusion spectrogram branch only 51.33 1.720
Waveform sub-network 64.79 1.045
Fusion waveform branch only 31.51 2.500

model. We see that while the ensemble of both sub-networks per-
forms well, the late fusion model is able to extract feature inter-
dependencies of the waveform and spectrogram that still outperform
the ensemble model in terms of accuracy. The late fusion model also
has fewer parameters and is trained end-to-end.

4.4. Latent Representation Fusion Methods

Most approaches to feature fusion utilize linear methods such as
element-wise summation and concatenation of vectors and feature
maps. A more advanced operation, Multimodal Factorized Bilinear
Pooling [21], has been used within visual question answering and
captures more expressive features than linear methods while being
less computationally expensive than conventional bilinear pooling.

We experiment using these fusion methods to see whether we
can fuse features in a more expressive fashion. Table 1 and Figure
1 depict the design for element-wise summation fusion. For con-
catentation, latent vectors lw and ls are combined to a final size of
2048 units. This new vector is passed into the classification layers,
with the dense layers outputting 1024, 512, 10 units, respectively.
For MFB fusion, we set k = 3 and o = 1024, as described in [21].
The MFB fusion model has the same design as Figure 1, but the
element-wise summation operation is replaced with MFB.

Table 5 shows the performance of our fusion model when utiliz-
ing element-wise sum, concatenation, and MFB. All methods per-
form similarly, however element-wise summation produces the low-
est validation loss model. Fusion by concatenating latent vectors
results in the highest accuracy model. We select element-wise sum-
mation fusion as it produced the lowest loss in addition to it being
the least computationally expensive operation.

5. ABLATION STUDIES

Although we see a classification performance improvement when
fusing waveform and spectrogram features, we must validate that
the improvement is from complementary features extracted from
both modalities. It may be the case that the feature extraction
branches are underparameterized, and when adding more param-
eters the model performs better solely due to the increase in param-
eterization and not the second modality. To test this hypothesis, we
expand both sub-networks such that their number of parameters ex-
ceed the fusion model by doubling each of the CNN block filter re-
sponses, classification layer responses, and increasing latent vectors
to 2048 units. As shown in Table 7, both sub-networks were unable
to surpass the performance of the fusion model, showing that the
added performance in the fusion model is from the added modality.

To further understand the differences of each sub-network’s
performance, we compare each sub-network to their equivalent sub-
network trained in the fusion setting. Examining the performance
drop when removing feature extraction branches Fw and Fs in the

Table 7: Parameterization ablation study.
Model Accuracy % Log Loss # Params
Fusion model 70.78 0.915 1.4M
Large spectrogram sub-network 66.48 1.043 4.2M
Large waveform sub-network 63.44 1.041 3.9M

Table 8: Class-Wise losses of the fusion model.

Class-Wise loss Fusion Fusion spec.
branch only

Fusion wave.
branch only

Airport 0.901 1.226 3.441
Shopping Mall 0.944 0.995 1.612
Metro Station 1.053 2.030 1.827
Street Pedestrian 1.104 1.069 2.638
Public Square 1.321 1.384 0.663
Street Traffic 0.424 0.843 3.038
Tram 0.899 2.106 4.182
Bus 0.747 4.905 0.723
Metro 1.145 2.825 4.324
Park 0.535 0.443 2.913

fusion model may give clues into how the branches train alone
versus in the fusion setting. The trained waveform and spectro-
gram sub-networks depicted in Table 3 are compared to the fusion
model’s respective sub-network. As shown in Table 6, the sub-
networks that are trained in the fusion setting have a substantial
performance loss when removing the opposite sub-network, far be-
low the performance of the respective sub-network that is trained
independently. We infer that when trained end-to-end, each of the
sub-networks in the fusion model learn to focus on disparate fea-
tures that when fused together, improve classification performance.

We also investigate class-wise loss when removing each branch
of the fusion model, as shown in Table 8. Most classes have the
lowest loss in the fusion model, however when removing the wave-
form branch, the spectrogram branch has a lower loss for the Street
Pedestrian and Park class. When removing the spectrogram branch,
the waveform branch has a lower loss for the Public Square and
Bus class. We infer that while the fusion model can generally cap-
ture complementary features from each modality, the fusion opera-
tion is not able to exploit the full degree of complementarity of each
branch’s features. A fusion method that can fully exploit the modal-
ity complementarity would further improve ASC performance.

6. CONCLUSION

In this paper, we investigate feature fusion of two common audio
representations, the raw waveform and Mel-spectrogram, and show
that there are complementary features being learned that improve
ASC performance. Further, we explore various fusion methods
and experimentally validate that the proposed late fusion model is
able to outperform other feature fusion designs. Our proposed fu-
sion model utilizes these features to significantly outperform the
DCASE 2021 Challenge Task 1B audio baseline and achieve 2nd

place against the audio-only submissions. In future work, we will
investigate more fusion methods to better exploit waveform and
spectrogram feature complementarity and explore the effects of us-
ing independent data augmentations on the separate modalities.
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