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ABSTRACT 

Audio captioning is a multi-modal task, focusing on generating a 

natural sentence to describe the content in an audio clip. This pa-

per proposes a solution of automated audio captioning based on 

weakly supervised pre-training and word selection methods. Our 

solution focuses on solving two problems in automated audio cap-

tioning: data insufficiency and word selection indeterminacy. As 

the amount of training data is limited, we collect large-scale 

weakly labeled dataset from Web with heuristic methods. Then 

we pre-train the encoder-decoder models with this dataset fol-

lowed by fine-tuning on the Clotho dataset. To solve the word se-

lection indeterminacy problem, we use keywords extracted from 

captions of similar audios and audio tags produced by pre-trained 

audio tagging models to guide caption generation. The proposed 

system achieves the best SPIDEr score of 0.310 in the DCASE 

2021 Challenge Task 6. 

Index Terms— Audio captioning, encoder-decoder model-

ing, weakly supervised pre-training, audio similarity, audio tag 

1. INTRODUCTION 

The automated audio captioning (AAC) problem is defined as an 

intermodal translation task of automatically generating a textual 

description for an input audio signal [1]. This task needs infor-

mation including identification of sound events, acoustic scenes, 

spatiotemporal relationships of sources, foreground versus back-

ground discrimination, concepts, and physical properties of ob-

jects and environment [2]. Audio captioning needs to extract the 

feature representation of audio space and map it to natural lan-

guage space. Therefore, most of the previous works adopt en-

coder-decoder framework [3-6]. Our solution focuses on solving 

two problems in automated audio captioning: data insufficiency 

and word selection indeterminacy. 

As the amount of training data in the audio captioning task is 

limited, training a well generalized end-to-end model is difficult. 

It is well-established that pre-training on large datasets followed 

by fine-tuning on target datasets boosts performance [7]. We use 

heuristic methods to collect a weakly labeled dataset for pretrain-

ing, which contains 65667 audios and corresponding captions. In 

addition, our system uses PANN’s [8] architecture as an encoder, 

which is trained on the large-scale AudioSet [9] dataset.  

In AAC task, one acoustic event/scene in an audio can be de-

scribed with different words, leading to a combinatorial explosion 

of possible captions [3]. This word selection indeterminacy prob-

lem may lead to difficulty in training. We try two methods to tackle 

this problem. Firstly, considering that similar audios may have 

similar captions, we train a model to calculate the similarity be-

tween audios and use keywords extracted from the captions of sim-

ilar audios to assist decoding. Secondly, we try to use audio tag 

information to assist decoding. 

The contributions of this work are in the following aspects. 

Firstly, we propose a method to use pretrained PANN models as 

encoder and to pretrain the whole model on a large weakly labeled 

dataset. Secondly, to relieve the word selection indeterminacy, we 

introduce audio tags and caption keywords in the decoding stage. 

Thirdly, ablation studies are conducted to confirm the effective-

ness of different strategies in the proposed approach. 

The paper is organized as follows: Section 2 describes the pro-

posed method for DCASE 2021 audio captioning challenge. Sec-

tion 3 introduces the ablation study experiment setup. The experi-

mental results are presented in Section 4. Section 5 concludes this 

work.  

2. SYSTEM DESCRIPTION 

This section describes our methods. Please refer to our technical 

report for more details [10]. 

2.1. Data augmentation 

Perturb audio data In the Clotho dataset, each audio has five 

captions. Using audio augmentation methods such as speed per-

turbation [11] and reverberation [12], we perform a 5-fold aug-

mentation of the Clotho dataset. 
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Figure 1: The overview diagram of the proposed method. The Expend data includes AudioCaps and weakly labeled dataset. 

AudioCaps dataset We also add AudioCaps [13] for training, 

which is a large-scale dataset of about 51K audio clips to human-

written text pairs collected via crowdsourcing on the AudioSet 

dataset.  

Weakly labeled dataset We collect audios and corresponding de-

scriptions from the Freesound 1 , Zapsplat 2 , Soundbible 3  and 

SoundJay4 website. Audios that are shorter than 5 seconds are re-

moved. And for those longer than 30 seconds, we randomly select 

15 to 30 seconds of clips from the audio. We use heuristic rules to 

filter and clean captions [10]. As a result, we collected 65667 au-

dios with captions from the four websites. 

2.2. Pretrain encoder 

PANNs are models pre-trained on raw AudioSet recordings with 

different structures. Several PANN systems outperform previous 

state-of-the-art audio tagging systems and can be transferred to 

other audio comprehension tasks. Three different networks in 

PANNs are selected as encoders, namely CNN14, Resnet38 and 

Wavegram-Logmel CNN5. 

2.3. Similar audio searching 

As mentioned above, similar audios may have similar descriptions. 

For an audio without captions, we can get relevant keywords from 

the captions of its similar audios, which can help to generate better 

caption. 

Inspired by text similarity calculation methods such as ESIM 

[14], we design a model to calculate the similarity between audios. 

We use CNN146 as audio encoder and get the 2048-dimension fea-

ture sequence. Then, we treat each audio feature sequence as the 

word embedding sequence and similarity between two audios is 

calculated with the ESIM network. 

 
1 https://freesound.org 
2 https://www.zapsplat.com/ 
3 https://soundbible.com/ 
4 https://www.soundjay.com/ 

For training, we use SPIDEr score between captions of two au-

dios as their ground truth similarity. We train this model with tri-

plet dynamic margin loss. Given an anchor audio a, its similar 

audio p, and unsimilar audio n, the loss calculation is defined as 

follows: 

𝐿𝑜𝑠𝑠(𝑎, 𝑝, 𝑛) = max(0,𝑚(𝑎, 𝑝, 𝑛) + 𝑠(𝑎, 𝑝) − 𝑠(𝑎, 𝑛)) (1) 

where 𝑠(. ) is the similarity as mentioned above, and 𝑚(. ) is the 

margin function. The margins for each pair of (a, p, n) are differ-

ent. We calculate the margins by the SPIDEr scores between cap-

tions of audios: 

𝑚(𝑎, 𝑝, 𝑛) = max(0.4, 𝑆𝑃𝐼𝐷𝐸𝑟(𝑎, 𝑝) − 𝑆𝑃𝐼𝐷𝐸𝑟(𝑎, 𝑛)) (2) 

2.4. Decoder 

As in [4], we use transformer networks as decoder.  

Tag enhanced decoder In order to reduce the search space, we 

utilize audio tag information by adding it to the beginning of the 

output sequence. The tags we use is based on AudioSet Ontology7. 

To avoid the problem of sparse data, we merge fine-grained tags 

with the help of the structural features of the ontology and get 13 

tags, named Self-Tag-13. CNN14 is used to get the Self-Tag-13 

tags of audios in training set and test set. During the training pro-

cess, the decoder needs to predict the tag of audio before generat-

ing caption. In the test phase, the decoder generates caption given 

the corresponding tag of test audio. 

Keyword enhanced decoder We extract keywords from captions 

of similar audios. Specifically, we select 50 captions of the top 10 

most similar audios for the target audio, use NLTK8 to perform 

stemming, and extract the top 10 keyword stems according to the 

TF-IDF weight. In the decoding stage, a fixed boost score is added 

to log likelihood for all word forms of the keywords. The boost 

score is set to 0.5. 

5https://zenodo.org/record/3987831#.YMhofqgzaUk 
6 https://github.com/qiuqiangkong/audioset_tagging_cnn 
7 http://research.google.com/audioset/ontology/index.html 
8 https://www.nltk.org/ 
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Table 1: Ablation study. PE: Pre-trained encoder. KD: Keyword enhanced decoder. TD: Tag enhanced decoder. PD: Perturbed audio 

data. AD: AudioCaps dataset. WD: Weak label dataset. 

Model BLUE1 BLUE2 BLUE3 BLUE4 METEOR ROUGE-L CIDEr SPICE SPIDEr 

Baseline 0.521 0.328 0.216 0.139 0.153 0.353 0.326 0.102 0.2142 

PE 0.541 0.348 0.228 0.149 0.162 0.362 0.386 0.112 0.2490 

PE+KD 0.552 0.360 0.240 0.156 0.167 0.372 0.409 0.119 0.2641 

PE+TD 0.537 0.341 0.225 0.148 0.163 0.359 0.371 0.114 0.2427 

PE+PD 0.550 0.353 0.232 0.149 0.164 0.366 0.385 0.118 0.2514 

PE+PD+AD 0.554 0.356 0.235 0.153 0.167 0.364 0.405 0.117 0.2609 

PE+PD+AD+WD 0.578 0.381 0.258 0.171 0.176 0.384 0.444 0.123 0.2837 

PE+PD+AD+WD+KD 0.583 0.391 0.267 0.177 0.179 0.388 0.456 0.128 0.2920 

 

Table 2: Experimental results on the evaluation split of Clotho dataset. 

Model BLUE1 BLUE2 BLUE3 BLUE4 METEOR ROUGE-L CIDEr SPICE SPIDEr 

Model 1: CNN14 0.583 0.388 0.265 0.178 0.179 0.385 0.473 0.128 0.300 

Model 2: Resnet38 0.593 0.400 0.274 0.184 0.183 0.392 0.482 0.133 0.308 

Model 3: Resnet38 + TD 0.581 0.386 0.261 0.173 0.178 0.384 0.456 0.131 0.294 

Model 4: Wavegram-Logmel CNN 0.585 0.392 0.269 0.182 0.177 0.389 0.474 0.130 0.302 

Ensemble 1 2 4 0.600 0.409 0.283 0.192 0.184 0.398 0.497 0.135 0.316 

Ensemble 1 2 3 4 0.603 0.414 0.286 0.195 0.186 0.400 0.499 0.137 0.318 

 

3. EXPERIMENTS 

3.1. Dataset 

The Clotho [2] v2 dataset consists of audio clips from the 

Freesound platform [15] with captions annotated via crowdsourc-

ing [16]. The Clotho v2 dataset is divided into a development split 

of 3839 audio clips, a validation split of 1045 audio clips, an eval-

uation split of 1045 audio clips, and a test split of 1043 audio clips. 

We used the development split of Clotho, AudioCaps and 

weakly labeled dataset for training, the evaluation split for testing. 

The validation split is selected as the validation data.  

3.2. Data pre-processing 

All audio clips are down-sampled to 32kHz. The configuration of 

audio feature extraction is the same as that of PANNs[8]. We use 

words in the development-training split of Clotho as vocabulary. 

Words out of vocabulary are represented by <UNK>. <SOS> and 

<EOS> are also employed as the start-of-sequence and end-of-se-

quence tokens, respectively. 

3.3. Training detail 

Training method As is shown in Figure 1, the whole training pro-

cess is divided into three stages. In the pre-training stage, the pa-

rameters of encoder are frozen and only the decoder is trained. In 

the training stage, the encoder parameters are unfrozen and trained 

together with the decoder. In the experiment where AudioCaps and 

weakly labeled dataset are included, the finetuning stage is used to 

finetune the model only with the Clotho dataset. 

Model settings We use CNN14 as an encoder for ablation study, 

which consists of 6 convolutional blocks and each convolutional 

block consists of 2 convolutional layers with a kernel size of 3×3. 

In addition to CNN14, Resnet38 and Wavegram-Logmel CNN are 

used as encoder in our submissions. Resnet38 consists of 16 basic 

blocks in the Resnet [17], where each block consists of two con-

volutional layers with a kernel size of 3×3, and a shortcut connec-

tion between input and output. Wavegram-Logmel-CNN uses 

CNN14 as a backbone and uses a trainable 1D-Conv based 

frontend to extract features from time-domain waveforms. We use 

a 2-layer Transformer [18] with a hidden dimension of 256 and 4 

heads as decoder.  

To improve performance and avoid over-fitting, Label smooth-

ing [19] and SpecAugment [20] are applied during training. The 

configuration of SpecAugment is the same as that of PANN. The 

learning rate is 3e-4, 1e-4 and 5e-5 for the three training stages 

separately. In the inference stage, a beam search with beam size 3 

is implemented to achieve better decoding performance. 

3.4. Evaluation metrics 

A total of eight objective metrics are utilized to evaluate our model 

generated captions. Among the metrics used, BLEU@1-4 [21] 

measures a modified n-gram precision. METEOR [22] measures a 

harmonic mean of precision and recall of segments of the captions 

between the predicted and the target. ROUGEL [23] measures F-

score based on the longest common subsequence. CIDEr [24] 

measures a weighted cosine similarity of n-grams. SPICE [25] 

compares semantic propositions extracted from caption and refer-

ence. SPIDEr [26] is the arithmetic mean between the SPICE score 

and the CIDEr score. 

4. RESULTS 

4.1. Ablation study 

To verify the effectiveness of the tricks and components in the pro-

posed model, several ablation experiments are conducted. 
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The experiment results are shown in Tab.1. Baseline is the 

model training from scratch with the Clotho dataset.  

As shown in Table 1, most of the tricks and components can 

improve the final SPIDEr score. First of all, the benefits of data 

augmentation are significant. Both the AudioCaps dataset and the 

weakly labeled dataset collected from the Internet can improve the 

final performance. And the collected weakly labeled dataset can 

bring more benefit than the AudioCaps dataset. The reason may be 

that the weakly labeled dataset is collected from websites similar 

to Freesound, which matches the data distribution of Clotho da-

taset more closely. 

Secondly, adding a pre-trained encoder can significantly im-

prove SPIDEr scores, which shows that the pre-trained PANN can 

extract more effective features from the audio. Thirdly, perturbing 

audio data slightly improves the spider score. 

Finally, the keyword enhanced decoder can assist the generation 

of captions. Compared to experiments without keyword enhanced 

decoder, both experiments with this component get great improve-

ment on all evaluation metrics. This indicates that similar audio 

captions contain valuable information for AAC task. 

Note that compared to using PE only, by adding the tag en-

hanced decoder, the SPIDEr score drops a little bit. We thought 

this decline was due to the tag prediction errors produced by pre-

trained PANN model. 

4.2. Submitted systems 

In Table 2, we present the relevant results of our submission 2, 

which is our best submission in the DCASE Challenge. To tackle 

the problem of insufficient data, validation data is added to the 

train dataset.  

Three different model architectures of PANN are trained using 

the best strategy combination (PE+PD+AD+WD) obtained from 

ablation research. At the same time, we also try to add tag en-

hanced decoder to the Resnet architecture for training. Finally, 

model ensemble is performed by adding the predicted scores of 

multiple models. We first ensemble three different snapshots un-

der the same model architecture and then we try two ensemble 

strategies, ensemble of three different architecture models and en-

semble of all four architecture models. 

Experiments show that Resnet achieves the highest spider score, 

and Resnet38 with tag enhanced decoder has the lowest score. 

Model ensemble can significantly improve SPIDEr scores. Alt-

hough the SPIDEr score of the model with tag enhanced decoder 

declines, it improves the final result after the model ensemble. 

4.3. Case study 

We choose two cases from evaluation split of Clotho to show 

the impact of keyword enhanced decoder and tag enhanced de-

coder on captions generation. For each case, 2 representative ref-

erence captions are listed. 

Table 3 shows the impact of keyword enhanced decoding. We 

can see that keyword enhanced decoding can make the caption 

more specific and closer to the caption written manually. The dif-

ferent forms of the ten keyword stems extracted from similar au-

dio captions in the vocabulary is shown in the bottom of Table 3. 

Most of the keywords are in line with the content of the audio, 

which can help to generate captions more precisely. 

 

Table 3: The case for Chopping pieces of mushrooms vigor-

ously.wav. 

Name Caption 

Ref 1 Vegetables are cut and chopped on a cutting 

board by someone. 

Ref 2 A person cutting and chopping vegetables on a 

cutting board. 

w/o KD chopping vegetables with a knife. 

KD chopping vegetables on a cutting board with a 

knife. 

keyword knives/knife chopping/chopped/chop/chops veg-

etable/vegetables woods/wood cutting/cuts/cut 

saw/saws/sawed/sawing/ boards/board wooden 

food slices/sliced/slicing 

 

Table 4: The case for SamyeLing_Pheasant121102.wav. 

Name Caption 

Ref 1 A bird caws at regular intervals while smaller 

birds chirp in the background. 

Ref 2 A bird making a call and another bird that is 

chirping. 

w/o TD a person uses a tool to each other. 

TD a bird is chirping and then another bird is chirp-

ing in the background. 

Tag TGA_animal 

 

Table 4 shows an example of the advantage of the tag enhanced 

decoder. Guided by the tag, i.e., TGA_animal, captions about 

birds can be generated. Without this strategy, the generated cap-

tions are far from the reference captions. This case indicates that 

when the tag is accurate, the tag enhanced decoder can keep the 

generated caption within a reasonable space. 

5. CONCLUSIONS 

In this paper, we present a solution of automated audio captioning 

based on weakly supervised pre-training and word selection meth-

ods, and conducted a detailed ablation study to clarify which ele-

ment is effective. From the results, pretrained encoder, keyword 

enhanced decoder and data augmentation are effective in improv-

ing the accuracy of AAC task. In particular, we propose a set of 

heuristic methods for collecting weakly-labeled data sets. This 

method can effectively alleviate the problem of insufficient data. 

We also verified that the captions of similar audio are valuable for 

the AAC task. In future work, we will explore the promotion of 

larger-scale data pre-training for AAC tasks, and try other effec-

tive methods to integrate similar audio captions information into 

AAC tasks. 

6. REFERENCES 

[1] K. Drossos, S. Adavanne, and T. Virtanen, “Automated audio 

captioning with recurrent neural networks,” in IEEE Work-

shop Appl. Signal Process, Audio Acoust, (WASPAA), 2017, 

pp. 374–378. 

[2] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An audio 

captioning dataset,” in 45th IEEE International Conference 

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 

2020, pp. 736–740. 

9



Detection and Classification of Acoustic Scenes and Events 2021  15-19 November 2021, Online
  

 

[3] Takeuchi, Daiki, et al. “Effects of word-frequency based pre-

and post-processings for audio captioning,” in Proceedings of 

the Detection and Classification of Acoustic Scenes and 

Events Workshop (DCASE), 2020, pp. 190-195. 

[4] Chen, Kun, et al. “Audio Captioning Based On Transformer 

And Pre-trained CNN,” in Proceedings of the Detection and 

Classification of Acoustic Scenes and Events 2020 Workshop 

(DCASE2020), 2020, pp. 21-26. 

[5] Perez-Castanos, Sergi, et al., “Listen carefully and tell: an au-

dio captioning system based on residual learning and gamma-

tone audio representation,” in Proceedings of the Detection 

and Classification of Acoustic Scenes and Events 2020 

Workshop (DCASE2020), 2020, pp. 150-154. 

[6] Xu, Xuenan, et al., “A crnn-gru based reinforcement learning 

approach to audio captioning,” in Proceedings of the Detec-

tion and Classification of Acoustic Scenes and Events Work-

shop (DCASE), 2020, pp. 225-230. 

[7] Gururangan S, Marasović A, Swayamdipta S, et al., “Don’t 

Stop Pretraining: Adapt Language Models to Domains and 

Tasks,” in Proceedings of the 58th Annual Meeting of the As-

sociation for Computational Linguistics (ACL), 2020, pp. 

8342-8360. 

[8] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang and M. D. 

Plumbley, “PANNs: Large-Scale Pretrained Audio Neural 

Networks for Audio Pattern Recognition,” in IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, 

2020, vol. 28, pp. 2880-2894. 

[9] Gemmeke, Jort F., et al., “Audio set: An ontology and hu-

man-labeled dataset for audio events,” in 2017 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2017, pp. 776-780. 

[10] Yuan, Weiqiang, Han, Qichen, et al., “The DCASE 2021 

Challenge Task 6 System: Automated Audio Captioning with 

Weakly Supervised Pre-training and Word Selection Meth-

ods,” DCASE2021 Challenge, Tech. Rep., 2021. 

[11] Ko, Tom, et al. “Audio augmentation for speech recognition,” 

in Sixteenth Annual Conference of the International Speech 

Communication Association (INTERSPEECH), 2015, pp. 

3586-3589. 

[12] Ko, Tom, et al., “A study on data augmentation of reverberant 

speech for robust speech recognition,” in 2017 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), 2017, pp. 5220-5224. 

[13] C. D. Kim, B. Kim, H. Lee, and G. Kim, “Audiocaps: Gener-

ating captions for audios in the wild,” in Proceedings of the 

2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language 

Technologies, Volume 1 (Long and Short Papers), 2019, pp. 

119–132. 

[14] Chen, Q., Zhu, X., Ling, Z. H., Wei, S., Jiang, H., & Inkpen, 

D, “Enhanced LSTM for Natural Language Inference,” in 

Proceedings of the 55th Annual Meeting of the Association 

for Computational Linguistics, 2015, pp. 1657-1668. 

[15] F. Font, G. Roma, and X. Serra, “Freesound technical demo,” 

in Int. Conf. Multimedia (MM’13), 2013, pp. 411-412. 

[16] S. Lipping, K. Drossos, and T. Virtanen, “Crowdsourcing a 

dataset of audio captions,” in Proceedings of the Detection 

and Classification of Acoustic Scenes and Events Workshop 

(DCASE), 2019, pp. 139–143. 

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning 

for image recognition,”in IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2016, pp. 770–778. 

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. 

N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you 

need,” in Advances in neural information processing systems, 

2017, pp. 5998–6008. 

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 

“Rethinking the inception architecture for computer vision,” 

in Proceedings of the IEEE conference on computer vision 

and pattern recognition, 2016, pp. 2818–2826. 

[20] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. 

Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-

tation method for automatic speech recognition,” in Proc. In-

terspeech 2019, pp. 2613–2617, 2019. 

[21] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a 

method for automatic evaluation of machine translation,” in 

Proceedings of the 40th annual meeting on association for 

computational linguistics. Association for Computational 

Linguistics, 2002, pp. 311–318. 

[22] S. Banerjee and A. Lavie, “Meteor: An automatic metric for 

mt evaluation with improved correlation with human judg-

ments,” in Proceedings of the ACL workshop on intrinsic and 

extrinsic evaluation measures for machine translation and/or 

summarization, 2005, pp. 65–72. 

[23] C.-Y. Lin, “ROUGE: A package for automatic evaluation of 

summaries,” in Text Summarization Branches Out. Barce-

lona, Spain: Association for Computational Linguistics, July 

2004, pp. 74–81. 

[24] R. Vedantam, C. L. Zitnick, and D. Parikh, “Cider: Consen-

sus-based image description evaluation,” in 2015 IEEE Con-

ference on Computer Vision and Pattern Recognition 

(CVPR), 2015, pp. 4566–4575. 

[25] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: 

Semantic propositional image caption evaluation,” in Euro-

pean Conference on Computer Vision. Springer, 2016, pp. 

382–398. 

[26] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, “Im-

proved image captioning via policy gradient optimization of 

spider,” in Proceedings of the IEEE international conference 

on computer vision, 2017, pp. 873–881. 

10


