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ABSTRACT

Sound recorded from beehives is important to understand a colony’s
state. This fact is used in the we4bee1 project, where beehives are
equipped with sensors (among them microphones), distributed to
educational institutions and set up to record colony characteristics at
the communication level. Due to data protection laws, we have to
ensure that no human is recorded besides the bees’ sound. However,
detecting the presence of speech is challenging since the frequen-
cies of human speech and the humming of bees largely overlap.
Despite having access to only a limited amount of labeled data, in
this initial study we show how to solve this problem using Siamese
networks. We find that using common convolutional neural net-
works in a Siamese setting can strongly improve the ability to detect
human speech in recordings obtained from beehives. By adding
train-time augmentation techniques, we are able to reach a recall of
up to 100%, resulting in a reliable technique adhering to privacy
regulations. Our results are useful for research projects that require
written permits for acquiring data, which impedes the collection of
samples. Further, all steps, including pre-processing, are calculated
on the GPU, and can be used in an end-to-end pipeline, which allows
for quick prototyping.

Index Terms— Audio classification, Siamese networks, Speech
detection, Deep learning

1. INTRODUCTION

With the introduction of the General Data Protection Regulation
(GDPR) [1] in the European Union, publicly recording sound at
any time, even for scientific purposes, requires written agreements
and the immanent possibility to stop recording from the user’s side.
Smart home devices ensure this by only recording data after a signal
word. Uploading recorded data is allowed, if no speaker can be
recognized individually from the recording (i.e., distortion) or the
recording device ensures no privacy concerned data is contained
in the file (i.e., speech detection). Despite these challenges, it is
desirable to use this data since sound is rich in information and
enables more fundamental understandings of communicating organ-
isms, such as bee colonies.

In this paper we focus on the task of detecting the presence
of speech in audio signals obtained from beehives of our we4bee
project. The we4bee project distributed over 100 Top Bar Hives
(TBH), mainly to educational institutions in Germany. Within these
“smart” beehives (see Figure 1), we can continuously monitor the
state of the colony, and even analyse the auditory communication
of the bees. Bee monitoring systems are an important tool for api-
arists [2], and especially sound recordings are inevitable to fully

1https://we4bee.org

Figure 1: Sensor placement of the TBH. This cutaway view of the
beehive shows the sensor placement of all sensors. The placement
of the two microphones (one inside, one outside), is highlighted
in yellow. Both mono sources are merged as a stereo-signal and
uploaded as such. Image taken from we4bee1

understand the beehive’s state [3]. Especially in swarming predic-
tion, sound recordings have shown great success, in contrast to
simpler monitoring, such as observing the temperature [4], which
we used in prior work [5]. Our contributions are as follows: 1) An
algorithm which achieves high recall, allowing allows us to detect
human speech in a challenging environment, 2) a privacy-regulation
conform recording approach without distorting the signals, and 3) to
the best of our knowledge, the first study on human speech detection
for smart apiculture.

2. RELATED WORK

As one of the first, [6] uses a convolutional neural network (CNN) to
classify sound. This model is trained on the Environmental Sound
Classification dataset (ESC-50) [7], consisting of 50 classes with
40 samples each. All samples are 5 s long and split into overlap-
ping spectrogram segments. The length of the extracts is 950ms
(short variant) and 2.3 s (long variant), Lastly, the probabilities of
all segment-level predictions are taken into account to obtain a final
prediction. The authors find that using the longer samples improves
the classification accuracy, reaching a score of 64.5%.

In 2017, Stowell et al. hosted the Bird Audio Detection challenge
(BADc) [8]. For this challenge, the task is to detect the presence
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Table 1: Overview of the dataset.
Dataset negative samples positive samples

Train 119 16
Validation 27 3

Test 25 10

Overall 171 29

of any bird sound in short (mostly 10 s) audio recordings. The
development data and test data come from different sources, which
requires methods that generalize to unseen recording conditions.
The highest scoring approach uses CNNs on spectrogram inputs and
cyclical time shifting to classify the data [9]. With their submission
named bulbul, which works on spectrograms calculated over 14 s,
they reach an area under ROC score (AUROC) of 88.7%.

Building on this architecture [10] classify sound excerpts of
audio data recorded from beehives. The excerpts are labeled as
containing bee-related sound or containing external sounds. Mel
spectrograms are then calculated and used as input features to the
network, with random pitch and time shifting augmenting the train-
ing data. Using a wide receptive field of 30 s, the classifier network
reaches an AUROC score of 90.1%.

In [11], Manocha et al. use a Siamese network [12] to compare
the similarity of input pairs. On several audio datasets, among them
ESC-50, they study the problem of retrieving semantically similar
audio clips. In their setup, log-scaled spectrograms are calculated for
the data, and feed to Siamese networks to obtain dense embedding
vectors. Using a k nearest neighbor search on the embeddings, the
authors achieve a mean precision of up to 78.4%, indicating that the
learned representations successfully capture similarity.

In this work, we use the mentioned CNNs in a Siamese setting to
detect speech presence in audio recordings obtained from beehives.

3. DATASET

In order to enable continuous sound monitoring with we4bee, we
obtained permission to record audio at one location. Since the data
for this feasibility study currently originates from a single beehive
only, we plan to add more recording stations in the future. Recording
started in May 2020, and is still running. For the purpose of this
paper, we used one day each in August and September for training
and validation data, and a separate day in October for final testing.

Each audio sample is recorded at 44.1 kHz, 16 bits resolution for
60 s. We let one voluntary annotator manually label a small, random
amount of these recordings on file level. Each sample is hand-
labeled as class 0, no human speech present (negative samples), or
as class 1, meaning the presence of human speech (positive samples).
Additionally, to collect more positive samples, we followed a simple
heuristic: Every time speech was detected in the current sample,
we searched in a ±10min interval for more positive samples. An
exemplary spectrogram of a recording with speech segments can be
seen in Figure 2. Table 1 lists the complete dataset statistics.

This dataset poses two challenges: First, human speech is only
sparsely present, both in terms of absolute numbers of samples
and relative time within the samples. Analysing shorter windows
would yield more samples but also lead to higher class imbalance
towards class 0 which is why we kept the 60 s windows from the
recordings. These samples come from a broad range of situations,
from children playing far away (hardly audible) to adults talking next

Figure 2: Sample audio file containing speech. A high noise level is
created by a motor moving until 25 s, marked by the large arrow. The
speech, located at 50 s (small arrow), is covered by the background
noise and not visually discernible.

to the beehives (clearly audible). Second, the general limited number
of annotated samples increases the difficulty. Large supervised audio
datasets such as the ones used for the BADc have 24 000 annotated
samples and more. In contrast, our labeled dataset only consists of
200 samples in total. The challenge is therefore to learn a model to
classify a diverse, unbalanced, and small dataset.

4. METHODS

4.1. Siamese Neural Networks

Siamese neural networks [12] are a class of networks that learn
the similarity of an input pair. Each sample is fed into the neural
network to obtain a dense representation, termed embedding. A
distance metric (i.e., Euclidean distance) is then used to calculate
the distance between the embeddings. To interpret the result, one
often applies a sigmoid activation function, forcing the values to
lie between [0, 1]. An output close to 0 indicates highly similar
samples, conversely values near 1 indicate high dissimilarity. The
term “siamese” refers to the fact that the same set of weights is used
to calculate each embedding of the input pair.

We train the Siamese networks to minimize the distance between
audio pairs from the same class and to maximize the distance for
opposite pairs. For this, we randomly draw an audio sample, and
pair it both with a random sample from the same class (this pair is
labeled as 0), and with a random sample from the opposite class
(labeled as 1). The learned embeddings are used to train a kNN
classifier [13, 14]. To obtain class predictions for the test samples,
we first extract embeddings for the test data and then query the
classifier.

4.2. Base Neural Networks

Motivated by the frequent usage of mel-scaled spectrograms (Mel
spectrograms from now on) as input features, we utilize the two
networks briefly introduced in Section 2 (the networks trained on the
ESC dataset and submitted to the BADc, respectively) , and one pub-
lished in an introductory article on sound classification with CNNs.
We adapt each network to accept the raw audio and compute the
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Mel spectrograms as part of the forward pass, using the kapre [15]
package. With this modification, the computation is accelerated by
the GPU, making a separate on-CPU pre-processing step obsolete.

Saeed The first network is from work published by Aaqib
Saeed [16], which we name Saeed after its author. The input Mel
spectrogram features are merged with their deltas, local estimates
of the derivative that capture the transition dynamics of sound. The
resulting two-channel representation is then framed, splitting the
vector into small excerpts. These excerpts are processed by four
sets of the following stack: convolution→ batch normalization [17]
→ ReLU activation [18, 19]→ max pooling. Additionally to the
proposed architecture, we add a drop dropout [20] layer before each
pooling operation and replace the max- with global max-pooling in
the last stack. Afterwards, we add a further dropout operation prior
to two ReLU dense layers. We modify the final layer to have a single
neuron only and replace the softmax with a sigmoid activation.

Bulbul The highest-scoring submission in the aforementioned
BADc is a CNN named Bulbul [9]. The key feature of this network
is its wide receptive field, enabling it to find short local events. The
input Mel spectrograms are normalized with batch normalization,
followed by four sets of the following stack: convolution→ leaky
ReLU → max pooling layers. The output is then flattened, and
followed by two blocks of dropout→ dense→ leaky ReLU layers.
The final layer has a single neuron with sigmoid activation.

ESC The third model we used is the network introduced for the
ESC dataset (see Section 2 and [7, 6]), which we call ESC. The Mel
spectrogram is stacked with its delta features. The computation of
these features is followed by a single stack of convolution→ dropout
→ max-pooling. After another convolution and max pooling layer,
the tensor is flattened and processed by two dense layers, each with
dropout. The output activation is a binary sigmoid.

5. EXPERIMENTAL SETUP

For all experiments, we utilize the Adam optimizer [21] with default
parameter values: A learning rate of 0.001, β1 of 0.9, and β2 of
0.999. Each model is trained and evaluated on our dataset five
times, and the results are averaged. We use librosa [22] to load
and downsample the audio to 22 050Hz. As a metric function, we
follow [9] and report the area under the receiver-operating curve
(AUROC) score [23, 24, 25]. This metric first calculates recall
versus fall-out at various threshold levels, yielding the ROC curve.
The area under this curve captures the performance of a classifier
in a single metric. A value of 0.5 equals random guessing, a value
of 1.0 is equal to a perfect classifier. For our imbalanced two-
class dataset, we use the AUROC metric, as opposed to misleading
accuracy scores. Further, for the baseline networks, we interpret
the binary output as class 1 if it is above the default threshold of
0.5, and as class 0 otherwise. Similarly, for the Siamese networks
the default threshold is 0.5. Additionally, we report the recall for
class 1 (speech). Since samples of class 1 might contain sensitive
information, we are interested in particularly high recall. Therefore,
regarding privacy, a false negative is more severe than a false positive.

5.1. Baselines

We initially tried various clustering algorithms, which scored only
slightly better than random guessing and where thus not further eval-
uated. We therefore used the three CNNs introduced in Section 4.2
as baseline networks, without using a Siamese setting. For the train-
ing we follow the approach of [9]: We train the network for 100

Table 2: Baseline networks on the test set, averaged over five runs.

Network AUROC Recall speech

Saeed 0.6125± 0.0400 0.0
Bulbul 0.7525± 0.0100 0.0
ESC 0.5017± 0.0300 0.0

epochs, use EarlyStopping [26] with a patience of 20 epochs and a
batch size of 16. We reduce the learning rate by a factor of 10, if the
area-under-curve score has not improved for ten consecutive epochs.

5.2. Siamese Network

We use all networks introduced in Section 4.2 in a Siamese setting.
For all networks, we replace the final hidden dense and any sub-
sequent layer with a single dense layer of 128 neurons, which is
interpreted as the embedding vector. All embedding vectors are
normalized using L2 normalization.

We train our Siamese network for 100 epochs and use EarlyStop-
ping on the validation AUROC score with a patience of 20 epochs.
Since our audio samples are quite large, we use small batch sizes for
the training. The default value is 4, which means that four pairs are
created, using 8 individual audio samples in total.

To obtain better scores, we also try train-time augmentations
on the raw audio. For this, we used the audiomentations2

package. With a probability of 50% each, we add gaussian noise,
use time-shifting of ±30 s, and shift the pitch ±2 semitones.

Further, we experiment with more epochs (500) and try different
EarlyStopping offsets (300 and 500), which is the number of guar-
anteed update steps done before the counter begins. We try different
values for the number of neighbors k ∈ {1, 3, 5}.

6. RESULTS & DISCUSSION

As summarized in Table 2, of the baseline networks, the ESC net-
work reaches the lowest AUROC score, with 50.17%. The next
best network, Saeed, scores more than 10 points higher, reaching
61.25%, and the best network, Bulbul, reaches 75.25%. How-
ever, our primary indicator of performance, the recall of the speech
class, is drastically lower; all three networks achieve a recall of 0.
Using a Siamese setting, we can improve the score for all three
networks (Table 3), and our strongest candidate reaches 94% speech
recall and an AUROC score of 96.88%. The ESC network does not
benefit from a Siamese setup, it reaches only slightly better scores
compared to the non-Siamese setting. Generally, a higher number of
neighbors when classifying the test data via kNN improves scores.

When using train-time augmentations, as described in Sec-
tion 5.2, we observe two primary effects: First, the scores are worse
compared to no augmentation, as shown in Table 4. Secondly,
training takes considerably longer since the computation is done
on the CPU. On examination of the validation AUROC curve we
noticed that the scores heavily oscillate in the beginning. Before
the scores stabilize and increase, either the EarlyStopping patience
prematurely terminates the run or the maximum number of epochs
(100) is reached.

These instabilities can be overcome by using an offset for
EarlyStopping and by training for more epochs. We find that an
offset of 300 is sufficient when training for 500 epochs. Combined

2https://git.io/JcQJQ
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Table 3: Scores for the Siamese networks on the test dataset, averaged over five runs, without augmentation.

Saeed Bulbul ESC

k AUROC Recall speech AUROC Recall speech AUROC Recall speech

1 0.8633± 0.1600 0.76± 0.31 0.9500± 0.0500 0.90± 0.01 0.5317± 0.0500 0.18± 0.05
2 0.8988± 0.1400 0.76± 0.31 0.9696± 0.5000 0.90± 0.10 0.5258± 0.0600 0.18± 0.05
3 0.9046± 0.1300 0.74± 0.29 0.9688± 0.0500 0.94± 0.10 0.5537± 0.0600 0.04± 0.05

Table 4: Scores for the Siamese networks on the test dataset, averaged over five runs, with augmentation. Augmenting the training data stops
the training prematurely, as explained in Section 6.

Saeed Bulbul ESC

k AUROC Recall speech AUROC Recall speech AUROC Recall speech

1 0.6092± 0.1900 0.26± 0.34 0.4867± 0.0200 0.04± 0.05 0.5192± 0.0400 0.18± 0.11
2 0.6775± 0.1500 0.26± 0.34 0.4838± 0.5000 0.04± 0.05 0.5254± 0.0600 0.18± 0.12
3 0.6837± 0.1400 0.28± 0.31 0.5083± 0.0500 0.04± 0.09 0.4908± 0.1000 0.00± 0.00

Table 5: Scores for the Siamese networks on the test dataset, averaged over five runs, with augmentation. The training is done with an offset of
300 epochs for EarlyStopping. Compared to Table 4, using such an offset can lead to improved results.

Saeed Bulbul ESC

k AUROC Recall speech AUROC Recall speech AUROC Recall speech

1 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.495 ± 0.020 0.04± 0.09
2 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.51 ± 0.05 0.04± 0.09
3 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.52 ± 0.07 0.06± 0.13

with augmentation, we reach perfect AUROC and recall scores
(100%) with both Bulbul and Saeed. These perfect scores indi-
cate overfitting, which might be due to the relatively small dataset.
We plan to address this in further research by increasing both the
dataset’s size and diversity. Nonetheless, for this initial study the
results are very encouraging. A sample embedding is visualized
with t-SNE [27, 28] in Figure 3, which shows how the classes are
separated well in space. As before, the ESC network does not benefit.
We suspect that this is due to the relatively shallow architecture,
which may prevent the network from learning meaningful features.
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Figure 3: t-SNE plot (perplexity=12.5) of the learned embeddings,
obtained from the Siamese Bulbul network for the test dataset.
The network can perfectly separate the data.

7. CONCLUSION

Sound recordings of beehives are an important source of information
for modeling the behavior of bees but it is not trivial to record pub-
licly accessible hives in a privacy preserving manner. To allow for
GDPR-compliant sound recordings of bee colonies we considered
multiple approaches for presence of speech detection, allowing us to
detect and remove human speech before storing the sound data. In
this initial feasibility study, we used three convolutional neural net-
works to detect presence of speech in these challenging recordings.
By using them in a Siamese setting, we achieve high recall. Moti-
vated by the good results, we then used augmentation techniques
and increased the number of epochs to achieve perfect recall and
AUROC scores. For our small datasets, these results are promising,
but open the opportunity for future work in several directions:

First, our current dataset is limited to recordings from a single
beehive. In prospective work, it can be enriched with recordings
from more beehives. This would capture more locations and charac-
teristics, allowing to better examine the ability to generalize. Second,
the code can be adapted for on-device inference. Currently, for the
beehives we have permission to record, we upload the audio data
to the cloud. Only then do we check for the presence of speech.
However, this step can be greatly simplified by running the detection
directly on the Raspberry Pi which powers all beehive sensors.
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