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ABSTRACT

It is a practical research topic how to deal with multi-device
audio inputs by a single acoustic scene classification system with
efficient design. In this work, we propose Residual Normaliza-
tion, a novel feature normalization method that uses frequency-
wise normalization with a shortcut path to discard unnecessary
device-specific information without losing useful information for
classification. Moreover, we introduce an efficient architecture, BC-
ResNet-ASC, a modified version of the baseline architecture with
a limited receptive field. BC-ResNet-ASC outperforms the baseline
architecture even though it contains the small number of parameters.
Through three model compression schemes: pruning, quantization,
and knowledge distillation, we can reduce model complexity fur-
ther while mitigating the performance degradation. The proposed
system achieves an average test accuracy of 76.3% in TAU Urban
Acoustic Scenes 2020 Mobile, development dataset with 315k pa-
rameters, and average test accuracy of 75.3% after compression to
61.0KB of non-zero parameters. The proposed method won the 1st
place in DCASE 2021 challenge, TASK1A.

Index Terms— acoustic scene classification, efficient neural
network, domain imbalance, residual normalization, model com-
pression

1. INTRODUCTION

Acoustic scene classification (ASC) is the task of classifying sound
scenes such as “airport”, “train station”, and “urban park” to which
a user belongs. ASC is an important research field that plays a key
role in various applications such as context-awareness and surveil-
lance [1, 2, 3]. Detection and Classification of Acoustic Scenes and
Events (DCASE) [4] is an annual challenge, attracting attention to
the field. There are various interesting tasks in the DCASE2021
challenge, and we aim for TASK1A: Low-Complexity Acoustic
Scene Classification with Multiple Devices [5, 6].

TASK1A classifies ten different audio scenes from 12 Euro-
pean cities using four real and 11 simulated devices. In this year,
the task becomes more challenging as an ASC model needs to solve
two problems simultaneously which practically exist in real appli-
cations; First, data is collected from multiple devices, and the num-
ber of samples per device is unbalanced. Therefore, the proposed
system needs to solve the domain imbalance problem while gener-
alizing to different devices. Second, TASK1A restricts the model
size and therefore requires an efficient network design.

† Qualcomm AI Research is an initiative of Qualcomm Technologies,
Inc.∗Author completed the research in part during an internship at Qual-
comm Technologies, Inc.

In recent years, a number of researches have been proposed for
more efficient and high-performance ASC. Most of them are based
on convolutional neural network (CNN) using residual network and
ensemble [7, 8, 9, 10]. The top-performing models in the previous
TASK1A utilize multiple CNNs in a single model with parallel con-
nections [7, 9]. For the generalization of the model, [8, 11] show
that there is a regularization effect by adjusting the receptive field
size in CNN-based design. However, these works also use models of
several MB, and it is still challenging to satisfy the low model com-
plexity of TASK1A of this year. In addition, when using the previ-
ous methods, we found an accuracy drop of up to 20% on the unseen
devices compared to the device with sufficient training data. In this
work, we propose methods to leverage the generalization capabili-
ties of unseen devices while maintaining the model’s performance
in lightweight models. First, we introduce a network architecture for
ASC that utilizes broadcasted residual learning [12]. Based on this
architecture, we can achieve higher accuracy while reducing the size
by a third of the baseline [8]. Next, we propose a novel normaliza-
tion method, Residual Normalization (ResNorm), which can lever-
age the generalization performance for unseen devices. ResNorm
allows maintaining classification accuracy while minimizing the in-
fluence on different frequency responses of devices by performing
normalization of frequency bands in the residual path. Finally, we
describe model compression combined with pruning and quantiza-
tion to satisfy the model complexity of the task while maintaining
performance using knowledge distillation.

This work is an expanded version from the challenge technical
report submissions [13]. The rest of the paper is organized as fol-
lows. Section 2 describes the network architecture, Residual Nor-
malization, and model compression methods. Section 3 shows the
experimental results and analysis. Finally, we conclude the work in
Section 4.

2. PROPOSED METHOD

This session introduces an efficient model design for device-
imbalanced acoustic scene classification. First, we present a modi-
fied version of Broadcasting-residual network [12] for the acoustic
scene domain. Following, we propose Residual Normalization for
generalization in a device-imbalanced dataset. Finally, we describe
how to get a compressed version of the proposed system.

2.1. Network Architecture

To design a low-complexity network in terms of the number of
parameters, we use a Broadcasting-residual network (BC-ResNet)
[12] which uses 1D and 2D CNN features together for better effi-
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Table 1: BC-ResNet-ASC. Each row is a sequence of one or more
identical modules repeated n times with input shape of frequency
by time by channel and total time step T .

Input Operator n Channels

256× T × 1 conv2d 5x5, stride 2 - 2c
128× T/2× 2c stage1: BC-ResBlock 2 c
128× T/2× c max-pool 2x2 - -
64× T/4× c stage2: BC-ResBlock 2 1.5c

64× T/4× 1.5c max-pool 2x2 - -
32× T/8× 1.5c stage3: BC-ResBlock 2 2c
32× T/8× 2c stage4: BC-ResBlock 3 2.5c
32× T/8× 2.5c conv2d 1x1 - num class

32× T/8× num class avgpool - -
1× 1× num class - - -

ciency. While the BC-ResNet targets human voice, we aim to clas-
sify the audio scenes. To adapt to the differences in input domains,
we make two modifications to the network, i.e., limit the receptive
field and use max-pool instead of dilation.

The proposed architecture, BC-ResNet-ASC, is shown in Ta-
ble 1. The model has 5x5 convolution on the front with a (2, 2)
stride for downsampling followed by BC-ResBlocks [12]. In [8],
they show that the size of the receptive field can regularize CNN-
based ASC models. We change the depth of the network and use
max-pool to control the size of the receptive field. With a total of 9
BC-ResBlocks and two max-pool layers, the receptive field size is
109x109. We also do the last 1x1 convolution before global average
pooling that the model classifies each receptive field separately and
ensembles them by averaging. Original BC-ResNets use dilation in
temporal dimension to obtain a larger receptive field while main-
taining temporal resolution across the network. We observe that
time resolution does not need to be fully kept in the audio scene
domain, and instead of dilation, we insert max-pool layers in the
middle of the network.

In this work, we use BC-ResNet-ASC-1 and BC-ResNet-ASC-
8 whose base numbers of channels c are 10 and 80, respectively,
in Table 1. Table 2 compares our BC-ResNet-ASC-8 with two
baselines: CP-ResNet [8] which is a residual network-based ASC
model with limited receptive field size; and original BC-ResNet-
8 with the number of Subspectral Normalization [14] groups of 4.
As shown in Table 2, BC-ResNet-ASC-8 records Top-1 test accu-
racy 69.5% with only one-third number of parameters compared to
CP-ResNet showing 67.8% accuracy. Moreover, BC-ResNet-ASC-
8 outperforms the original BC-ResNet-8 by a 1% margin with the
modifications.

2.2. Residual Normalization

Instance normalization (IN) [15] is a representative approach to re-
ducing unnecessary domain gaps for better domain generalization
[16] or domain style transfer [17, 18] in the image domain. While
domain difference can be captured by channel mean and variance in
the image domain, we observe that differences between audio de-
vices are revealed along frequency dimension as shown in Figure 1.
To get audio device generalized features, we use instance normal-
ization by frequency (FreqIN) as below.

FreqIN(x) =
x− µnf√
σ2
nf + ε

, (1)

Table 2: Network Architectures. Compare Top-1 test accuracy (%)
on TAU Urban AcousticScenes 2020 Mobile, development dataset.

Network Architecture #Param Top-1 Acc. (%)

CP-ResNet, c=64 899k 67.8
BC-ResNet-8, num SSN group = 4 317k 68.6 ± 0.4
BC-ResNet-ASC-8 315k 69.5 ± 0.3

Figure 1: 2D t-SNE [19] visualization of feature maps of BC-
ResNet-ASC-1 stage2 (without ResNorm). Top: Concatenation of
frequency-wise mean and standard deviations. Bottom: Concate-
nations of channel mean and standard deviations. The training sam-
ples are separated better by device ID (A to S3) with frequency-wise
statistics.

where,

µnf =
1

CT

C∑
c=1

T∑
t=1

xncft,

σ2
nf =

1

CT

C∑
c=1

T∑
t=1

(xncft − µnf )
2. (2)

Here, µnf , σnf ∈ RN×F are mean and standard deviation of the
input feature x ∈ RN×C×F×T , where N , C, F , T denote batch
size, number of channel, frequency dimension, and time dimension
respectively. ε is a small number added to avoid division by zero.

Direct use of IN can result in loss of useful information for clas-
sification contained in domain information. To compensate for in-
formation loss due to FreqIN, we add an identity shortcut path mul-
tiplied by a hyperparameter λ. We suggest a normalization method,
named Residual Normalization (ResNorm) which is

ResNorm(x) = λ · x+ FreqIN(x). (3)

We apply ResNorm for input features and after the end of every
stage in Table 1. There are a total of five ResNorm modules in the
network.

2.3. Model Compression

To compress the proposed model, we utilize three model compres-
sion schemes: pruning, quantization, and knowledge distillation.
Pruning. The pruning method prunes unimportant weights or chan-
nels based on many criteria. In this work, we choose a magnitude-
based one-shot unstructured pruning scheme used in [20]. After
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Table 3: Residual Normalization. We demonstrate how residual normalization affects BC-ResNet-ASC on TAU Urban AcousticScenes 2020
Mobile, development dataset. We show mean and standard deviation of Top-1 test accuracy (%) (averaged over 3 seeds, * averaged over 6
seeds).

Method #Param A B C S1 S2 S3 S4 S5 S6 Overall

BC-ResNet-ASC-1 (Baseline) 8.1k 73.1 61.2 65.3 58.2 57.3 66.2 51.5 51.5 46.3 58.9 ± 0.8
BC-ResNet-ASC-1 + Global FreqNorm 8.1k 73.9 60.9 65.5 60.2 57.9 67.9 50.2 54.3 49.4 60.0 ± 0.9
BC-ResNet-ASC-1 + Fixed PCEN 8.1k 68.0 60.4 57.2 64.0 63.0 66.2 62.3 61.8 56.5 62.2 ± 0.8

BC-ResNet-ASC-1 + ResNorm 8.1k 76.4 65.1 68.3 66.0 62.2 69.7 63.0 63.0 58.3 *65.8 ± 0.7
w/o ResNorm in Network 8.1k 75.1 68.9 67.0 66.0 63.9 69.3 63.4 66.9 63.6 67.1 ± 0.8
w/o Shortcut 8.1k 68.2 62.1 58.6 64.2 65.3 66.3 65.1 63.8 61.3 63.9 ± 0.7

BC-ResNet-ASC-8 + ResNorm 315k 81.3 74.4 74.2 75.6 73.1 78.6 73.0 74.0 72.7 *75.2 ± 0.4
w/o ResNorm in Network 315k 80.8 73.7 73.0 74.0 72.9 77.8 73.3 72.1 71.0 74.3 ± 0.3
w/o Shortcut 315k 78.3 73.5 69.1 73.8 72.9 75.6 72.2 72.5 71.0 73.2 ± 0.3

training, we conduct unstructured pruning on all convolution layers
and do additional training to enhance the pruned model’s perfor-
mance.
Quantization. Quantization is the method to map continuous infi-
nite values to a smaller set of discrete finite values. We quantize all
of our models with quantization-aware training (QAT) with sym-
metric quantization [20]. We combine the pruning and quantization
methods. It means that we quantize the important weights which
are not pruned after the pruning process in the additional training
phase. We quantize all convolution layers as an 8-bit while utilize
the half-precision representation for other weights.
Knowledge Distillation. Knowledge Distillation (KD) trains the
lightweight model using the outputs of a pre-trained teacher net-
work. In general, previous model compression schemes such as
pruning and quantization decrease the performance by reducing the
model complexity. To enhance the performance of the compressed
model, we use a KD loss [21] using the pre-trained model as a
teacher network.

3. EXPERIMENTS

3.1. Experimental Setup

Datasets. We evaluate the proposed method on the TAU Urban
Acoustic Scenes 2020 Mobile, development dataset [6]. The dataset
consists of a total of 23,040 audio segment recordings from 12 Eu-
ropean cities in 10 different acoustic scenes using 3 real devices
(A, B, and C) and 6 simulated devices (S1-S6). The 10 acoustic
scenes contain “airport”, “shopping mall”, “metro station”, “pedes-
trian street”, “public square”, “street with traffic”, “park”, and trav-
elling by “tram”, “bus”, and “metro”. Audio segments from B and
C are recorded simultaneously with device A, but not perfectly syn-
chronized. Simulated devices S1-S6 generate data using randomly
selected audio segments from real device A. Each utterance is 10-
sec-long and the sampling rate is 48kHz. [6] divides the dataset into
training and test of 13,962 and 2,970 segments, respectively. In the
training data, device A has 10,215 samples while B, C, and S1-S3
have 750 samples each, which means the data is device-imbalanced.
Devices S4-S6 remain unseen in training. In test data, all devices
from A to S6 have 330 segments each.
Implementation Details. We do downsampling by 16kHz and use
input features of 256-dimensional log Mel spectrograms with a win-
dow length of 130ms and a frameshift of 30ms. During training, we

augment data to get a more generalized model. In the time dimen-
sion, we randomly roll each input feature in the range of -1.5 to
1.5 sec, and the out-of-range part is added to the opposite side. We
also use Mixup [22] with α = 0.3 and Specaugment [23] with two
frequency masks and two temporal masks with mask parameters of
40 and 80, respectively, except time warping. We use Specaugment
only for the large model, BC-ResNet-ASC-8. In BC-ResNet-ASC,
we use Subspectral Normalization [14] as indicated in [12] with 4
sub-bands and use dropout rate of 0.1. We train the models for 100
epoch using stochastic gradient descent (SGD) optimizer with mo-
mentum to 0.9, weight decay to 0.001, mini-batch size to 64, and
learning rate linearly increasing from 0 to 0.06 over the first five
epochs as a warmup [24] before decaying to zero with cosine an-
nealing [25] for the rest of the training. We use fixed λ = 0.1 for
ResNorm in experiments. Due to the absence of validation split in
the development dataset, we report the numbers of early stopping.
Baselines. We compare our method with other methods and do
some ablation studies: 1) Global FreqNorm, which normalizes data
by global mean and variance of each frequency bin; 2) Fixed per-
channel energy normalization (PCEN) [26], which is an automatic
gain control based dynamic compression and is used instead of log
Mel spectrogram in our experiment; 3) w/o ResNorm in Network,
which uses ResNorm module only at input not in the middle of the
network. 4) w/o shortcut, which is a special case of ResNorm when
λ = 0 in Equation 3 and uses FreqIN.

3.2. Residual Normalization

We do the experiments using BC-ResNet-ASC-1 and BC-ResNet-
ASC-8, and the overall results are on Table 3. The task has multi-
device inputs which are imbalanced with dominant device A. As a
result, the baseline, BC-ResNet-ASC-1, shows that the accuracy of
the device A is relatively higher than other seen devices, B, C, S1,
S2, and S3. Furthermore, the accuracy on unseen devices, S4, S5,
and S6 are even lower, and these results imply that the model is not
generalized well to multiple devices, especially for unseen devices.
When we use global normalization by frequency dimension, the re-
sult shows 60.0% accuracy which is 1% improvements compared to
the baseline, but still we can observe poor domain generalization.
We also try PCEN, a normalized feature instead of log Mel spec-
trogram. PCEN shows improvements for unseen devices, but we
also observe that the performance of device A degrades due to its
normalization. The proposed ResNorm uses FreqIN to get domain
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Table 4: Model compression Compare bitwidth, top-1 test accu-
racy (%) on Tau Urban AcousticScenes 2020 Mobile, development
dataset, and pruning ratio of the models (Average over 6 seeds).

BC-ResNet-ASC-8 + ResNorm, 300 epochs, KD

Method Bitwidth KD Pruning Accuracy

Vanilla model 32 - - 76.3 ± 0.8

Compressed model 8, 16 0.89 75.1 ± 0.9
Compressed model 8, 16 0.89 75.3 ± 0.8

invariant features while not loosing the useful class-discriminative
information through identity shortcut connection. The ‘BC-ResNet-
ASC-1 + ResNorm’ shows a large improvement, 6% compared to
baseline and records 65.8% test accuracy. The ResNorm shows per-
formance improvements not just for unseen devices but also for all
seen devices.

We do some ablation studies for the component of ResNorm.
First, we use the ResNorm module as the preprocessing module,
and do not use the module in the middle of the network; ‘w/o
ResNorm in Network’. For the small model, BC-ResNet-ASC-1,
‘w/o ResNorm in Network’ shows better performance, 67.1%, and
for the larger model, BC-ResNet-ASC-8, it shows a performance
degradation of 1%. Due to ResNorm’s regularization effect, it was
expected that this module could degrade the performance of a small
network. We expect that the module can control the normalization
power by the hyperparameter λ in Equation 3 to adapt to various
size of networks. In this work, we use fixed λ = 0.1, and leave the
automatic update of the λ as a future work. Second, ‘w/o shortcut’
shows the result when λ = 0 in ResNorm which equals to FreqIN in
Equation 1. Our design motivation is that the shortcut path will keep
the useful information for classification. The results show that Fre-
qIN records relatively lower accuracy for seen devices compared to
ResNorm. Especially, the margins on device A are 8.2% and 3.0%
on BC-ResNet-ASC-1 and BC-ResNet-ASC-8, respectively.

3.3. Model Compression

Simultaneously, we distill the knowledge of the pre-trained teacher
network (‘Vanilla’ model) into the compressed model for enhanc-
ing the performance and achieve the 0.2% improvement in test ac-
curacy. In detail, we prune the convolution layers of the model with
89% pruning ratios compared to vanilla and quantize all convo-
lution layers in a compressed model as an 8-bit. Other layers are
quantized as a 16-bit. The resulting ‘Compressed’ model has 33K
8-bit nonzero for convolution layers and 15K 16-bit parameters for
normalization, resulting in 61.5kB and shows 75.3% test accuracy
which is 1% lower than Vanilla model. We use the ensemble of two
compressed model in the DCASE 2021 challenge, task 1A.

4. CONCLUSIONS

In this work, we design a system to achieve two goals; 1) effi-
cient design in terms of the number of parameters and 2) adapt-
ing to device imbalanced dataset. To design an efficient acoustic
scene classification model, we suggest a modified version of Broad-
casting residual network [12] by limiting receptive field and us-
ing max-pool. We compress the model further by utilizing three
model compression schemes, pruning, quantization, and knowledge

distillation. Moreover, we propose a frequency-wise normalization
method, named Residual Normalization which uses instance nor-
malization by frequency and shortcut connection to be generalized
to multiple devices while not losing discriminative information.
Our system achieves 76.3% test accuracy on TAU Urban Acoustic
Scenes 2020 Mobile, development dataset with 315k number of pa-
rameters and the compressed version achieves 75.3 % test accuracy
with 89% pruning, 8-bit quantization, and knowledge distillation.
Residual normalization has a hyperparameter λ which can control
the regularization power of the module. We leave the automatic up-
date of the hyperparameter as future work.

5. REFERENCES

[1] M. Valenti, A. Diment, G. Parascandolo, S. Squartini, and
T. Virtanen, “DCASE 2016 acoustic scene classification using
convolutional neural networks,” in Proc. Workshop Detection
Classif. Acoust. Scenes Events, 2016, pp. 95–99.

[2] R. Radhakrishnan, A. Divakaran, and A. Smaragdis, “Audio
analysis for surveillance applications,” in IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics,
2005. IEEE, 2005, pp. 158–161.

[3] S. Chu, S. Narayanan, and C.-C. J. Kuo, “Environmental
sound recognition with time–frequency audio features,” IEEE
Transactions on Audio, Speech, and Language Processing,
vol. 17, no. 6, pp. 1142–1158, 2009.

[4] http://dcase.community/challenge2021/.
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