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ABSTRACT
Automated Audio Captioning (AAC) automatically creates captions
that can explain the given audio sound data using machine learn-
ing techniques. Researchers investigate the solutions for AAC on
DCASE 2021 audio captioning challenge. In the challenge, a model
is required to generate natural language descriptions of a given au-
dio signal. We use pre-trained models trained using AudioSet data,
a large-scale dataset of manually annotated audio events. A large
amount of audio events data would help capturing important au-
dio feature representation. To use the learned feature from Au-
dioSet data, we utilize CNN14 or ResNet54 network pre-trained
on AudioSet, which achieved state-of-the-art audio pattern recogni-
tion performance. Our proposed sequence-to-sequence model con-
sists of a CNN14 or ResNet54 encoder and a Transformer decoder.
Experiments show that the proposed model can achieve a SPIDEr
score of 0.246 and 0.285 on audio captioning performance. We fur-
ther experiment the use of three different voice features, log-mel
spectrogram, constant Q transform spectrogram, and gammatone
filter spectrogram.

Index Terms— Automated audio captioning, Acoustic event
detection, Transfer learning, Transformer

1. INTRODUCTION

Automated Audio Captioning (AAC) automatically creates captions
that can explain the given audio sound data using machine learn-
ing techniques. Many researchers investigated this exciting prob-
lem from DCASE challenges and workshops in 2020 and 2021
[1, 2, 3, 4, 5, 6]. One example of a generated caption on a given
sound could be “people talking in a small and empty room.” The
2021 DCASE AAC uses the Clotho v2.1 dataset [7]. Clotho v2.1
data contains 6,974 (4,981 from version 1 and 1,993 from version
2.1) audio clips in 15-30 seconds each with 5 captions in 8-20 En-
glish words.

In the DCASE 2020 competition on AAC, Drossos et al.
(2017) [1] introduce an encoder-decoder structured baseline for
the AAC task. The encoder-decoder structure is the most widely
used architecture for AAC. The baseline model has an encoder-
decoder scheme with a multi-layered, bi-directional GRU encoder
and multi-layered decoder. Takeuchi et al. (2020) [2] achieve
the top performance utilizing data augmentation, multi-task learn-
ing, and post-processing with an LSTM decoder. Chen et al.
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(2020) [3] proposes a pre-training stage for the encoder and com-
bines the transformer decoder to achieve the second-best model.
Perez-Castanos et al. (2020) [5] experiment resnet encoder and
LSTM decoder with gammatone feature as an input. Pellegrini
(2020) [4] propose Listen-Attend-Spell(LAS) architecture with lis-
tener encoder and speller decoder. Xu et al. (2020) [6] use a
CRNN encoder and a GRU decoder with fine-tuning by reinforce-
ment learning.

This year, the use of external data is allowed. Researchers
can train the important sound-related feature representation using
a massive amount of data such as AudioSet [8, 9]. Koizumi et al.
(2020) [10] utilize a pre-trained VGGish model with a transformer
decoder. Xu et al. (2021) [11] propose pre-trained CNN10 and
CRNN5 as encoder networks with GRU decoder.

In this paper, we propose transfer learning followed by trans-
former architecture. With the transfer learning, our proposed model
takes two pre-trained networks, 14-layers CNN (CNN14) and 54-
layers ResNet (ResNet54), trained on AudioSet as the encoder part
[12]. Those pre-trained networks achieve state-of-the-art perfor-
mance on audio pattern recognition, and we expect our encoder
network to compress important audio representation very well. Fur-
ther, we train a transformer decoder using the Clotho v2.1 dataset
for natural language generation. Finally, we experimented with
three different audio feature preprocessing methods (log-mel spec-
trogram, CQT spectrogram, and gammatone filter spectrogram) in
the ablation study.

2. PROPOSED METHOD

2.1. System Overview

Figure 1 describes the overview of our proposed system. The pre-
trained CNN14 and ResNet54 are taken as an encoder using transfer
learning [12]. We used a transformer decoder and trained our model
using the Clotho v2.1 dataset. In the training stage, we experiment
with three scenarios, 1) training all parameters from scratch with-
out transfer learning, 2) fine-tuning the last block of the pre-trained
network, and 3) training without fine-tuning the last block of the
pre-trained network. After the training stages, we evaluate the per-
formance of our system using a development set.

2.2. Pre-trained Audio Neural Networks using AudioSet

Kong et al. (2020) [12] propose Pre-trained Audio Neural Net-
works(PANNs) trained on the large-scale AudioSet dataset and
make the 15 pre-trained models available to the public, including
CNN14 and ResNet54. The AudioSet dataset includes over 5,000
hours of audio with 527 sound labels [8]. The audio clips from
AudioSet data are extracted from YouTube videos. The training
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Figure 1: Model Architecture

dataset consists of 2,063,839 audio files, including a “balanced sub-
set” of 22,160 audio files, where there are at least 50 audio files
for each sound class. The evaluation dataset consists of 20,371 au-
dio files. Audio files are padded to 10 seconds with silence if they
are shorter than 10 seconds. The pre-trained models (CNN14 and
REsNet54) are multi-label classification models for the 527 sound
classes achieving state-of-the-art performance. These PANNs can
be transferred to other audio-related tasks. We take CNN14 and
ResNet54 as the encoder part for the AAC model. Table 1 and 2
describe CNN14 and ResNet54 model architecture, respectively.

2.3. Encoder-Decoder

Our proposed model also has the traditional encoder-decoder struc-
ture for AAC. Our model uses CNN14 or ResNet54 as an encoder
and Transformer Decoder for natural language generation. The
CNN14 and ResNet54 models were pre-trained networks (CNN14,
ResNet54) learned from PANNs to AudioSet. We freeze the
weights taken from the pre-trained networks and train the Trans-
former decoder with the Clotho data. Furthermore, we attempted
to fine-tune the encoder network by unfreezing the last convolution
block layers of CNN14 and ResNet54 to find the optimal model.

2.3.1. Encoder

Our model used CNN14 and Resnet54 as an encoder for feature ex-
traction of input log-mel spectrogram [12]. CNN14 and Resnet54
models are pre-trained models from AudioSet, showing the high-
est mean average precision (mAP)1 among the available pre-trained
models. CNN14 and ResNet54 had the state-of-the-art mAP of
0.431 and 0.429, respectively [12]. Tables 1 and 2 show the struc-
ture of the CNN14 and ResNet54 that we used for ACC, respec-
tively. The number after the “@” symbol indicates the number of
feature maps. BottleneckB is an abbreviation for bottleneck block.

In Table 1, the 14-layer CNN consists of four convolution
blocks, each having two 3 × 3 convolution layers with ReLU ac-
tivation function and batch normalization, with an 2 × 2 average
pooling layer between the blocks. The number of channels in the
convolution blocks is 64, 128, 256, 512, 1024,2048, respectively.

1Average precision (AP) is defined as the area under the recall-precision
curve of a specific class. The mean average precision (mAP) is the average
value of AP over all classes.

Table 2 describes the ResNet54 architecture inspired by He et
al. (2016) [13] for Audio tagging. Two convolutional layers and
a downsampling layer are applied on the log-mel spectrogram to
reduce the input log-mel spectrogram size. Additionally, We had
three bottleneck blocks with 64 filters, four bottleneck blocks with
128 filters, 6 bottleneck blocks with 256 filters, and 3 bottleneck
blocks with 512 filters. Finally, two 3 x 3 convolutions are applied.
The BottleneckB in Table 2 is an abbreviation of bottleneck block.

Table 1: CNN14 architecture

CNN14
Log-mel spectrogram 64 mel bins

(3× 3 @64,BN,ReLU)×2
Pooling 2× 2

(3× 3 @128,BN,ReLU)×2
Pooling 2× 2

(3× 3 @256,BN,ReLU)×2
Pooling 2× 2

(3× 3 @512,BN,ReLU)×2
Pooling 2× 2

(3× 3 @1024,BN,ReLU)×2
Pooling 2× 2

(3× 3 @2048,BN,ReLU)∗2

Table 2: ResNet54 architecture

ResNet54
Log-mel spectrogram 64 mel bins

(3× 3 @512,BN,ReLU)×2
Pooling 2× 2

(bottleneckB@64)×3
Pooling 2× 2

(bottleneckB@128)×4
Pooling 2× 2

(bottleneckB@256)×6
Pooling 2× 2

(bottleneckB@512)×3
Pooling 2× 2

(3× 3 @512,BN,ReLU)×2

2.3.2. Decoder

Figure 2 describes our transformer decoder architecture. It uses a
standard transformer decoder consisting of multi-head self-attention
as a decoder. The decoder uses a 2-layers transformer with a hidden
dimension of 192 and 4 heads.

The input data of our decoder is the word embedding feature
pre-trained using the word2vec model. The positional encoding is
further applied. Next, it passes to the masked multi-head attention
module and returns a query vector for the following multi-head at-
tention module. The key and value vectors for the multi-head atten-
tion module are taken from the output of the encoder (CNN14 or
ResNet54) network. After following the feed-forward network, we
can get the output of the transformer block. The transformer block
iterates two times, and then the output is fed into a dense layer and
a softmax function to generate output probabilities of the caption
words.
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Table 3: Score for model performance on evaluation data

Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr
Baseline Model 0.378 0.119 0.050 0.017 0.263 0.078 0.075 0.028 0.051

CNN14 + Transformer
(From Scratch) 0.466 0.262 0.156 0.092 0.309 0.137 0.208 0.087 0.148

ResNet54 + Transformer
(From Scratch) 0.459 0.253 0.152 0.084 0.312 0.131 0.182 0.085 0.133

CNN14 + Transformer
(Transfer-learning with fine-tuning) 0.552 0.364 0.244 0.159 0.378 0.168 0.395 0.118 0.257

ResNet54 + Transformer
(Transfer-learning with fine-tuning) 0.546 0.358 0.239 0.156 0.373 0.166 0.379 0.113 0.246

CNN14 + Transformer
(Transfer-learning) 0.564 0.376 0.254 0.163 0.388 0.177 0.441 0.128 0.285

ResNet54 + Transformer
(Transfer-learning) 0.540 0.345 0.230 0.152 0.361 0.161 0.383 0.109 0.246

Figure 2: Transformer decoder

3. EXPERIMENTS

3.1. Dataset and Data Pre-processing

Clotho contains audio clips of CD quality (44.1 kHz sampling rate,
16-bit sample width) and five captions for each audio clip. The time
duration of the audio clips ranges from 15 to 30 seconds, and the
amount of words in each caption ranges from eight to 20 words.
Clotho provides three splits for developing audio captioning meth-
ods, namely development, evaluation, and testing. The development
and evaluation splits are freely available online, while the testing
split is withheld for scientific challenges. In this work, we employ
the development and evaluation splits of Clotho, having 2893 and
1045 audio clips, yielding 14465 and 5225 captions, respectively.
We choose Clotho because it is built to offer audio content diver-
sity, and extra care has been taken for eliminating spelling errors,
named entities, and speech transcription in the captions. Addition-
ally, Clotho is already employed at the DCASE 2020 audio caption-
ing task6 [7].

The log-mel spectrogram feature is used for the input
feature[14]. Audio data has 44.1kHz sampling frequency, and we
apply a Hann window of 1024 size with 50% overlaps. From each

window frame, we extract 64 log mel-band energies. We calculate
the maximum time window number, T , among sample datasets for
the number of time windows. We pad zero to the time dimension to
have a fixed size T for the input feature on our model.

The word embedding is pre-trained using the Word2Vec model
[15] via python package gensim [16]. Each caption sentence in the
training set is used to form a training corpus.

Spec Augment [17] is applied as a data augmentation method
for more robust training. With the Spec Augment, frequency masks
and time masks are randomly applied onto the log-mel spectrogram
before we feed the log-mel spectrogram input to the CNN14 or
ResNet54 encoder.

3.2. Hyper-parameters and Training Procedure

3.2.1. Hyper-parameters

In training, a batch size of 8 is used with a learning rate of 10−4. An
l2 regularization is applied to all trainable parameters with factor λ
= 10−6. We use the Adam Optimizer [18] and apply the Stochas-
tic Weight Averaging (SWA) method [19] to boost performance.
Dropout in P = 0.2 is applied to ResNet54 encoder and Transformer
decoder.

3.2.2. Training procedure

The training procedure consists of three parts. 1) Transfer learning
step for encoder network, 2) training transformer decoder network
while freezing the pre-trained encoder network, and 3) fine-tuning
unfreezing last convolutional block parameters from encoder net-
work.

We transfer two pre-trained networks, CNN14 and ResNet54,
as our encoder network in the transfer learning stage. These two
models are trained using log-mel spectrogram features using a large
amount of AudoSet data. We freeze the encoder network for the
following training stage.

In the training transformer decoder stage, we utilize the Clotho
data. Each audio is combined with each one of five caption anno-
tations and used as a sample. Each audio is used as one sample
in the evaluation, and all five captions are used as a reference for
metric computation. We used the 64 mel-band log-mel spectrogram
of the audio as our input feature and then converted the amplitude
into a decibel scale. A beam search with a beam size of 3 is im-
plemented to achieve better decoding performance in the inference
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Table 4: Ablation studies SPIDEr Score

Feature Scratch Transfer learning
Log-mel spectrogram 0.148 0.285

CQT spectrogram 0.15 -
gammatone spectrogram 0.2 -

stage. The Word2Vec model is trained with 1000 epochs, and the
proposed model is trained using 30 epochs.

Finally, in the fine-tuning stage, we unfreeze the last convolu-
tion blocks of pre-trained networks, CNN14 and ResNet54. The
fine-tuning is performed for 30 more epochs.

3.3. Evaluation Metrics

For the assessment of the performance of our method, we employ
The proposed metrics from the audio captioning task at DCASE
2021 challenge. These metrics can be divided into two categories.

Firstly there are machine translation metrics, which are
BLEUn [20], ROUGEL [21],and METEOR [22]. BLEU is a
precision-based metric. It calculates a weighted geometric mean
of a modified precision of n-grams between predicted and ground
truth captions. Due to the calculation of the modified precision that
favors short predicted captions, BLEU uses a penalty in the cal-
culation of the geometric mean. This penalty penalizes predicted
captions that are shorter than the ground truth. Typical lengths for
n-grams are one to four, resulting in BLEUn (n ∈ {1, 2, 3, 4}),
respectively [20, 23]. ROUGEL [21] is a Longest Common Subse-
quence (LCS) based metric. It calculates an F-measure using LCS
between the predicted and ground truth caption. The F-measure
is oriented towards recall using a value for the β = 1.2 in the F-
measure calculation [21, 23]. METEOR [22] calculates a harmonic
mean of precision and recall of segments of the captions between
the predicted and ground truth captions. The recall is weighted sig-
nificantly more than precision, and thus METEOR is considered a
recall-based metric [23]. It employs alignment between the words
of the predicted and ground truth captions and matches exact words,
stems of words, synonyms, and paraphrases. The alignment is com-
puted over segments of the captions between the ground truth and
predicted captions while minimizing the number of chunks needed.

Then, the captioning metrics are CIDEr [24], SPICE [25], and
a linear combination of these two metrics called SPIDEr [26].
CIDEr calculates a weighted sum of the cosine similarity between
the predicted and ground truth captions for n-grams of length n
with ∈ [1, 4]. The cosine similarity is calculated using Term Fre-
quency Inverse Document Frequency (TF-IDF) weighting for each
n-gram [24, 23]. SPIDEr is the average of CIDEr and SPICE, and
it evaluates both fluency and semantic properties of the predicted
captions.

3.4. Experimental Results

We experiment with three different scenarios, 1) training all pa-
rameters from scratch without transfer learning, 2) fine-tuning the
last block of the pre-trained network, and 3) training without fine-
tuning the last block of the pre-trained network. Table 3 shows
the experimental results from the three different scenarios and the
baseline. All scenarios of CNN14 Encoder+Transformer Decoder
and ResNet54 Encoder+Transformer Decoder models have higher
scores than the baseline model in all evaluation metrics. Also, All

transfer learning scenarios have better performance than the train-
ing from the scratch scenario. This shows that the transferred en-
coders trained with sufficiently large amounts of audio data perform
well on AAC. Between CNN14 and ResNet54 encoders, CNN14
encoder performed better than ResNet54 encoder in all evaluation
metrics. We also experiment with fine-tuning the last convolu-
tion block of encoder networks (CNN14 and ResNet54 models).
For CNN14 Encoder + Transformer Decoder, the transfer-learning
model without fine-tuning works better than with the fine-tuning
scenario in all evaluation metrics. On the other hand, for ResNet54
Encoder + Transformer Decoder, the model with fine-tuning has
better performance with BLEU, ROUGEL, and METEOR metrics
which are machine translation metrics. However, for the caption-
ing metrics such as SPICE, CIDEr, and SPIDEr scores, the re-
sult is inconclusive in that the models with fine-tuning have better
SPICE scores but have worse CIDEr scores and have similar SPI-
DEr scores.

3.5. Ablation Studies

We have tested three feature extraction methods, 1) log-mel spec-
trogram, 2) constant Q transform (CQT) spectrogram, [27] and 3)
Gammatone filter spectrogram. The Constant-Q-Transform (CQT)
is a time-frequency representation where the frequency bins are ge-
ometrically spaced, and the Q-factors (ratios of the center frequen-
cies to bandwidths) of all bins are equal. Gammatone filter spectro-
gram is computed by decomposing the input speech signal into the
time-frequency (T-F) domain using a bank of Gammatone filters,
followed by a down-sampling operation of the filter-bank responses
along the time dimension [28].

We compare these three features without transfer learning be-
cause there are no pre-trained models with CQT and gammatone
features. Table 4 shows the SPIDEr score performance using three
different features. The model using CQT spectrogram (0.148) has
similar SPIDEr performance with the model using log-mel spec-
trogram (0.15). However, the gammatone spectrogram (0.2) model
performs better than the model using the log-mel spectrogram. Pos-
sibly, we may have better performance with the gammatone spec-
trogram feature if the pre-trained model using the gammatone spec-
trogram is available.

4. CONCLUSION

The DCASE community is hosting competitions for better AAC
models in 2020 and 2021. In 2021, the use of external data is
allowed. Thus, we propose transfer learning followed by a trans-
former approach. We adopt CNN14 and ResNet54 pre-trained on
AudioSet data because it achieves state-of-the-art performance on
audio pattern recognition. The pre-trained CNN14 or ResNet54
models are taken as encoder networks for informative audio feature
extraction. With the transferred encoder and a transformer decoder,
our proposed systems outperform the baseline system with all eval-
uation metrics. Further, we experiment with three training scenar-
ios, 1) from scratch, 2) transfer learning, and 3) transfer learning
with fine-tuning. Among them, the transfer learning of CNN14 en-
coder without fine-tuning works the best, achieving a SPIDEr score
of 0.285.
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