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ABSTRACT

This paper presents an ensemble approach based on two unsuper-
vised anomalous sound detection (ASD) methods for machine con-
dition monitoring under domain-shifted conditions in DCASE 2021
challenge Task 2. The first ASD method is based on a conformer-
based sequence-level autoencoder with section ID regression and a
self-attention architecture. We utilize the data augmentation tech-
niques such as SpecAugment to boost the performance and com-
bine a simple scorer module for each section and each domain to
address the domain shift problem. The second ASD method is
based on a binary classification model using metric learning that
uses task-irrelevant outliers as pseudo-anomalous data while con-
trolling centroids of normal and outlier data in a feature space. As a
countermeasure against the domain shift problem, we perform data
augmentation based on Mixup with data from the target domain,
resulting in a stable performance for each section. An ensemble ap-
proach is applied to each method, and the resulting two ensembled
methods are further ensembled to maximize the ASD performance.
The results of DCASE 2021 challenge Task 2 have demonstrated
that our proposed method achieves a harmonic mean of 63.745%
of area under the curve (AUC) and partial AUC (p = 0.1) over all
machines, sections, and domains.

Index Terms— Anomalous sound detection, autoencoder, bi-
nary classification, metric learning

1. INTRODUCTION

Anomalous sound detection (ASD) is the task of detecting anoma-
lous sounds caused by atypical events, such as the malfunction or
breakdown of a machine. The detection of anomalous sounds can
be used to improve the efficiency of maintenance work on manu-
facturing equipment and infrastructure, and to monitor equipment
installed in locations which are difficult for people to enter. The use
of ASD technology is expected to become widespread during the
coming fourth industrial revolution, in applications such as factory
automation utilizing artificial intelligence [1].

When training ASD models, it would be difficult to collect data
representing every possible anomalous sound that could occur, be-
cause these sounds rarely occur during the normal operation of fac-
tory equipment, and the types of anomalous sounds which are pos-
sible are very diverse. Therefore, it is desirable to train ASD models
without using anomalous data. In addition, real-world environments

are often complicated and different conditions than those foreseen
during the training of the ASD models may be encountered. There-
fore, it is desirable to develop models that can detect anomalous
sounds even when the normal state distribution is changed (i.e., af-
ter domain shift).

The two main approaches that have been proposed for perform-
ing ASD are generative methods and classification methods. Gen-
erative methods use only the normal data of a target sound to model
its probability distribution and detect data that does not correspond
to the model, categorized as anomalous. As a result of advances in
deep learning technology, typical generative methods now involve
the training of autoencoders (AE) to reconstruct normal data and
calculate reconstruction error, or the use of autoregressive models
with recursive neural networks to calculate the model likelihood,
which is then used as an anomaly score [2, 3, 4, 5]. On the other
hand, more recently developed classification methods distinguish
between normal and outlier data by calculating anomaly scores
based on distance from a decision boundary [6, 7, 8, 9], which have
attracted much attention. Normal data from the operation of dif-
ferent machines is often used as outlier data during training. This
method assumes that anomalous data is distributed outside the nor-
mal data, and that the outlier data is distributed even further outside
the normal data. Based on this assumption, a binary classifier is
trained using the normal data as positive examples, and the outlier
data as pseudo-negative examples. Although generative and classi-
fication methods are both able to achieve good performance, they
are unable to resolve the domain shift problem because the training
and test data are recorded in the same environment.

Therefore, in this paper we propose an ASD method which is
an ensemble of an autoencoder and a binary classification model, al-
lowing it to function well even under domain shift conditions. The
first component is a conformer-based, sequence-level autoencoder
with section ID regression and a self-attention architecture [3].
We then utilize data augmentation techniques such as SpecAug-
ment [10] to boost performance, and add a simple scorer module to
each section and each domain to address the domain shift problem.
The second component of our ASD method is a binary classification
model employing metric learning, that uses task-irrelevant outliers
as pseudo-anomalous data while controlling the centroids of normal
and outlier data in a feature space [9]. As a countermeasure against
the domain shift problem, we also perform data augmentation based
on Mixup [11] using data from the target domain, resulting in sta-
ble performance for each data section. An ensemble approach is
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applied to each of the two components of our method, and the re-
sulting ensemble methods are then ensembled to maximize ASD
performance. We conduct our experimental evaluation using the
DCASE 2021 Challenge Task 2 dataset.

2. BASELINE METHODS

This section provides an overview of methods that achieved high
ASD performance when using the DCASE 2020 Task 2 data [12].
The Task 2 datasets contain recordings of six types of machines, and
each set of audio data for each type of machine consists of seven or
eight different machines of that type. ID information is provided to
indicate which machine the audio data belonged to.

2.1. Conformer-based autoencoder [3]

The autoencoder method [3] assumes that an autoencoder would
not be able to accurately reconstruct anomalous data, i.e., data other
than normal data used to train the autoencoder. We assume that the
input of an autoencoder at frame t is xt, and that the corresponding
output is x̂t. Reconstruction error et can be computed as follows:

et = abs(x̂t − xt), (1)

where abs(·) denotes an element-wise absolute operator. If xt

contains anomalous data, the norm of et should be large. Thus,
anomaly detection can be performed by simple thresholding.

In this paper, we use a conformer [13] as an autoencoder. ID
regression is used to accurately detect anomalous sounds combined
with the sound of the target machine. We concatenate the integer
machine ID to the input features, and the autoencoder then recon-
structs the input acoustic features and the machine ID. The autoen-
coder tends to misidentify the machine ID when the audio clip in-
cludes anomalous sound, even if we provide the correct machine
ID as an input. Therefore, we can detect whether the audio clip
includes anomalous sound from the estimated machine ID. In ad-
dition, we modify e1:T based on the distribution of the reconstruc-
tion error to improve detection accuracy. Specifically, frame-level
anomaly score, at, represent the negative likelihood of a Gaussian
mixture model (GMM) consisting of K-mixture Gaussians for et:

at = −
K∑

k=1

wkN (et |µk,Σk), (2)

where wk, µk, and Σk are the weight, mean vector, and covariance
matrix of the k th mixture component, respectively. For training
the parameters, we use the reconstruction error calculated from the
validation set, which is not used for training the autoencoder, but is
randomly selected 10% from the development data set. The frame-
by-frame anomaly scores obtained by the GMM are aggregated into
the final anomaly scores by removing some outlier data and using
the softmax weighted average, since some of the lowest or high-
est negative likelihood may have adversely affected the anomaly
scores. The aggregated anomaly score â is given by:

â =
1

T ′

T ′∑
i=1

a
(M)
i

exp(αa
(M)
i )∑T ′

i=1 exp(αa
(M)
i )

, (3)

where a(M)
i represents the frame-by-frame anomaly scores selected

from ai, T ′ is the number of selected frames, and α is a scalar
hyperparameter.

2.2. Binary classifier with metric learning [9]

A binary classifier is trained using normal data as positive examples
and with outlier data as pseudo-negative examples. We perform
learning for each particular machine ID. The normal data for a par-
ticular target machine ID is used as the normal data, and the normal
data of other machine IDs of the same machine type, as well as the
normal data of all of the other machines in the same dataset, are
used as outlier data.

Consider a set X = {x1,x2, ...,xN} that has N samples of
normal and outlier data. Normal and outlier data sets are assigned
labels yi ∈ {+1,−1} (i = 1, 2, ..., N) for each data sample. When
performing ASD using a method based on binary classification, the
network is trained to minimize the following binary cross-entropy
(BCE) loss function:

LBCE = −
1

N

N∑
i=1

{
u(yi)log (pi) + (1− u(yi))log(1− pi)

}
, (4)

where p represents the posterior probabilities output of network φp

(e.g., p = φp(x)), which minimizes (4) when x is used as input,
and where u(y) is a binary function that takes 1 for y > 0 and
0 for y ≤ 0. To further improve binary classification, we use the
Deep Double-Centroids Semi-supervised Anomaly Detection (DD-
CSAD) loss function proposed in [9], which considers the centroids
of both the normal and outlier data. The objective of the DDCSAD
loss function is to minimize intra-class variance and maximize inter-
class variance. The DDCSAD loss function is calculated as follows:

LDDCSAD =
1

N

N∑
i=1

{
‖ zi − cp ‖2yi + ‖ zi − cn ‖−2yi

}
, (5)

where z is the embedding vector output by encoder network φz

(e.g., z = φz(x)), which minimizes (5) when x is used as the in-
put, and where cp ∈ RD and cn ∈ RD represent the centroid of
the normal and outlier data, respectively. Note that the initial val-
ues of centroids cp and cn are calculated using randomly initialized
parameters, and are then recalculated at each epoch using the entire
training data set. They are updated at each epoch by recalculating
the centroids using the entire training data set. The following equa-
tion expresses the final loss function:

L = LBCE + λLDDCSAD, (6)

where λ > 0 is a hyperparameter that controls the balance be-
tween the loss functions. Multi-task learning using both the cross-
entropy of the posterior probability and the DDCSAD loss function
increases accuracy when learning the decision boundaries, resulting
in more accurate ASD.

During inference, posterior probability p, and distance d =‖
z− cp ‖2 between embedding vector z and centroid cp of the nor-
mal class, are used to obtain the anomaly score. First, we compute
distance d across the entire set of evaluation data, and then calculate
standardized distance d′ across the entire dataset. Finally, anomaly
score s is calculated using the following equation:

s = γ × (1− p) + (1− γ)× d′, (7)

where, γ is a hyperparameter that determines the proportion of
anomaly scores using posterior probability p.

3. PROPOSED METHODS

This section describes our proposed ASD methods working under
domain shift conditions. We use section ID instead of machine ID
due to the dataset change, but they have almost the same meaning.
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Figure 1: Overview of proposed autoencoder method.

Figure 2: Overview of proposed binary classification method.

3.1. Ensembled, comformer-based autoencoder

The first component of our method is a sequence-level autoencoder
with ID regression, which is based on the method described in Sec-
tion 2.1. An overview is shown in Fig. 1. To boost the autoen-
coder’s performance, we utilize SpecAugment [10] and dropout for
the input feature sequence. Inspired by the interpolation deep neu-
ral network approach proposed in [14], we apply SpecAugment and
dropout for the input feature sequence not only during training but
also during inference, where we replicate the input sequence and
apply different masking for each sequence. We then calculate the
reconstruction error for each sequence and integrate the results us-
ing a pooling operation (e.g., average or max). This allows us to
obtain the gain by using an ensemble model, even when using a
single model. To address the domain shift problem, we build sepa-
rate reconstruction error scoring modules for each section and each
domain. This method is enabling us to capture differences in the
anomaly score range between the sections and domains.

To further improve performance, we ensemble the model by
selecting the N -best models when using the development data for
each machine and each domain, and then integrate the outputs of
these models to obtain the final score. We normalize the outputs and
combine the normalized scores using the following four methods:
average, median, maximum, and ranking which converts the scores
into a rank and then calculates the average of the rankings.

3.2. Ensembled, binary classifier with metric learning

The second component of our proposed method is a binary classifi-
cation model using metric learning, based on the method described

in Section 2.2. An overview is shown in Fig. 2. We build the model
for the source domain, and then perform fine-tuning for the target
domain. When training for the source domain, only data from the
source domain is used. On the other hand, when fine-tuning the
model for the target domain, we create pseudo-target domain data
using Mixup [11], using source and target domain data. It is ex-
pected that the use of Mixup will increase variation within each
class and create data with an intermediate representation between
the positive and negative examples.

The performance of the binary classification method is less sta-
ble than that of the autoencoder method, since the binary classi-
fication method builds a different model for each section of data.
Therefore, we create many models in order to improve the perfor-
mance of the model ensemble; for example, we change the method
of pseudo-anomalous example selection, introduce additional data
augmentation using methods such as Gaussian Noise and Volume
control, change the architecture of the feature extraction module,
and use an additional loss function (ArcFace [15]). ArcFace is a
loss function used to achieve a clear geometric interpretation within
a feature space, and the combination of ArcFace with DDCSAD re-
sults in further improvement in ASD performance. During pseudo-
anomalous example selection, we also select samples from within
the same dataset, resulting in more stable performance across the
data sections. Finally, we use various different models as our fea-
ture extraction module, including ResNet34 [16], ResNeXt50 [17]
and EfficientNet b3 [18] in PyTorch Image Models [19]. We aver-
age N × S models for each machine and each domain, where S
represents the number of sections in the validation set.

3.3. Ensemble of the autoencoder and binary classifier models

We normalize the anomaly score of each of the two ensembled mod-
els to mean = 0 and variance = 1, and average the normalized scores.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

We conducted our experimental evaluation using the DCASE 2021
Challenge Task 2 dataset [20, 21]. The dataset consists of the
normal and anomalous operating sounds of seven types of real
machines: ToyCar, ToyTrain, fan, gearbox, pump, slider, and
valve. Data for each type of machine includes six sections. Each
section is further divided into two domains, containing source
and target data, respectively. Each recording is a single-channel,
10 second segment of audio sampled at 16 kHz. The training
data includes 1,000 samples in the source domain and only 3
samples in the target domain. The development and evaluation data
consists of around 200 samples in each domain. The training data
includes only normal sounds, but the development data includes
both normal and anomalous sounds to allow the evaluation of
anomaly detection performance. To evaluate the performance of
our proposed method, we included the following models in our
experiment for comparison:
Baseline (AE): The official autoencoder-based baseline
method [22], trained with normal training data, which mini-
mizes reconstruction error.
Baseline (MNV2): The official classification-based baseline
method, which uses MobileNetV2 [22] trained using section ID
classification.
Our baseline (AE): Our baseline, sequence-level autoencoder
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Table 1: Evaluation results. Values represent the harmonic mean of AUC [%] and pAUC (p = 0.1) [%] for each section of each domain.
“All / har-mean” column values represent the harmonic mean of AUC and pAUC over all machines, sections and domains.

ToyCar ToyTrain fan gearbox pump silder valve All
Method source target source target source target source target source target source target source target har-mean

dev

Baseline (AE) 59.44 54.74 64.31 51.99 59.14 56.72 56.42 61.04 63.85 53.01 67.09 55.71 52.43 51.45 57.28
Baseline (MNV2) 57.19 55.89 58.81 50.77 63.31 61.58 65.54 60.72 62.20 57.36 65.43 52.17 53.99 55.17 58.22
Our baseline (AE) 80.41 63.05 80.50 61.46 71.82 66.35 62.69 70.01 72.61 62.41 86.04 62.01 80.60 64.30 69.05
Our baseline (BC) 57.91 58.68 76.23 49.04 67.36 59.36 74.85 74.59 72.12 59.86 80.64 57.24 86.18 70.10 69.08
AE ens 83.29 68.70 81.06 62.83 74.37 69.75 64.14 72.32 74.60 65.68 86.12 65.41 82.94 67.81 71.67
BC ens 60.93 64.55 76.16 55.40 82.29 66.62 74.49 70.58 75.20 60.70 89.28 57.69 92.70 79.35 73.29
AE+BC ens (mix) 79.90 70.08 80.23 59.85 82.25 71.58 72.95 76.25 77.29 64.03 89.06 68.49 93.03 80.15 76.59
AE+BC ens (max) 83.29 68.70 81.16 62.83 82.29 69.75 74.49 72.32 75.20 65.68 89.28 65.41 92.70 79.35 75.68

eval

Baseline (AE) 61.33 55.63 61.86 63.26 57.99 52.54 61.17 60.58 56.38 52.55 56.76 51.78 51.22 50.69 56.38
Baseline (MNV2) 41.81 57.59 49.76 43.50 63.65 59.24 53.31 49.55 63.79 64.00 66.17 66.34 53.86 50.86 54.77
AE ens 54.94 54.95 65.84 54.82 62.84 59.00 66.18 60.31 58.13 62.14 71.45 62.49 63.30 49.52 59.92
BC ens 64.39 55.07 54.86 52.90 65.97 63.70 55.91 50.44 81.40 79.86 84.22 75.69 66.23 58.49 63.21
AE+BC ens (mix) 60.83 56.30 64.64 54.84 70.01 63.12 60.93 56.21 70.46 64.84 82.26 77.36 68.78 55.10 63.75
AE+BC ens (max) 54.94 54.95 65.84 54.82 65.97 59.00 55.91 60.31 81.40 62.14 84.22 62.49 66.23 58.49 62.26

model, trained for 50,000 steps using the Adam optimizer [23]
with Warmup scheduler [24]. The batch size was set to 64 and
the number of warmup steps was 8,000. The hyperparameters
were optimized for each machine and each domain, including
Mel-spectrogram extraction condition (e.g., shift size and Mel
basis), model architecture (e.g., the number of blocks, units and
kernel size) and post-processing. In SpecAugment, the number
of time masks was set to 50, with a width range from one to five,
while the number of frequency masks was set to five, with a width
range from zero to ten. The dropout rate for the input sequence was
set to 0.2.
Our baseline (BC): Our baseline, binary classification-based
model was ResNet34 [16]. The size of the spectrogram was
256× 256. The model was trained for 8,000 steps using the Adam
optimizer, with a learning rate for the fully-connected layer of
1.0e-3, and a learning rate for the convolution layer of 5.0e-4. The
OneCycleLR scheduler [25] was used, and the batch size was 64.
The ratio of normal to outlier data was set to 1:1 in the mini-batch.
When fine-tuning for the target domain, we trained the pre-trained
model created using source domain data for 800 steps. Sampling
was performed during fine-tuning so that the mini-batch always
contained 16 samples of target domain or pseudo-target domain
data, which was obtained by mixing up data from the target and
source domains.
AE ens: An ensemble of the proposed autoencoder models. The
value of N was selected from among 3, 5, 10 and 20, and the
ensemble methods were optimized for each machine and each
domain.
BC ens: An ensemble (average) of the proposed binary-
classification models. The value of N was set to two.
AE+BC ens (mix): The average of AE ens and BC ens.
AE+BC ens (max): The ensemble of AE ens and BC ens. We took
the maximum output value between AE ens and BC ens for each
machine and each domain.

The hyperparameters and post-processing parameters of each
model were optimized for each section and each domain.

4.2. Experimental results

Our experimental results are shown in Table 1. First, we focus on
the results when using the development data. When comparing the
performance of our baseline (AE) and AE ens, and our baseline
(BC) and BC ens, we can see that performance of harmonic mean

generally improved. When comparing the results when using our
two baseline methods, we can see that AE outperformed BC for
machine types ToyCar and ToyTrain, while BC outperformed AE
for machine types gearbox and valve, and further improvements are
yielded by ensembling these two methods, suggesting that each of
them focuses on different features of each machine type.

Next, we focus on performance when using the evaluation data.
BC ens outperformed AE ens for machine types pump, slider and
valve, regardless of the domain. In these types of machines, where
the sound generated is non-stationary (i.e., it includes a variety
of intermittent sounds, such as clicks), the BC-based method was
found to be superior. Unlike our results when using the develop-
ment data, ASD performance for ToyCar when using AE ens de-
creased. These results suggest that model performance tends to be
influenced not only by machine type, but also by the type of anoma-
lous sound that is present. Finally, we found that all of the pro-
posed methods outperformed all of the baseline methods with both
datasets, and that the AE+BC ens (mix) model achieved the best
ASD performance.

These results demonstrated that our proposed method per-
formed well under domain shift conditions. Furthermore, we found
that using an ensemble of the results from different ASD models fo-
cusing on different features contributes to score improvement, since
the outputs of the models complement each other.

5. CONCLUSION

In this paper, we presented an ensemble ASD approach using both
a conformer-based autoencoder and a binary classification model
with metric learning. Our experimental evaluation showed that the
proposed methods significantly outperformed the baseline methods
by achieving higher ASD scores. We also demonstrated that by us-
ing an ensemble of completely different ASD methods, we were
able to obtain better performance. These results suggest that differ-
ent ASD methods focus on different audio data features to detect
anomalous sounds, so it is important to ensemble models that can
pick out different features. In future work, we will develop a method
that can obtain the better ASD performance using fewer models.
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