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ABSTRACT

We present our submission to the DCASE2021 Challenge Task 2,
which aims to promote research in anomalous sound detection. We
found that blending the predictions of various anomaly detectors,
rather than relying on well-known domain adaptation techniques
alone, gave us the best performance under domain shifted condi-
tions. Our submission is composed of two self-supervised classifier
models, a probabilistic model we call NF-CDEE, and an ensemble
of the three – the latter obtained the top rank in the DCASE2021
Challenge Task 2.

Index Terms— DCASE, anomaly detection, domain shift, ma-
chine condition monitoring, machine health monitoring.

1. INTRODUCTION

The DCASE2021 Challenge Task 2 is concerned with identifying
anomalous behavior from a target machine using sound recordings
[1]. A major difference between this task and other DCASE tasks
is that it is not supervised. Accordingly, the available training data
only contains samples from the normal-state distributions. A further
complication added to this challenge is that the acoustic character-
istics of the training data and of the test data are different – this
condition is known as domain shift and there are some known re-
sults for reducing the performance gap between the training and test
data [2, 3, 4, 5, 6, 7, 8]. In our experiments, while we recognize the
potential of these techniques, we did not generally gain much from
using these methods alone.

In our submission, we used two self-supervised classifiers that
classified the section IDs similar to the approach several teams
followed in DCASE2020 [9, 10, 11, 12, 13]. For a third model,
we introduce a model that relies on several normalizing flows to
estimate the conditional density of input Mel spectrogram sec-
tions and use their combined outputs to produce an anomaly score
[14, 15, 16, 17, 18, 19, 20, 21, 22].

In the sequel we describe each model, how it was trained, its
hyperparameters, and their respective results. In order to put the
results into perspective, we include the scores for the baseline au-
toencoder and MobileNetV2 models on Tables 1 and 2, respectively.
The data used in this challenge is 16 KHz, single-channel, audio.
For more details, please see [1, 23, 24].

ToyCar ToyTrain fan gearbox pump slider valve
h-mean AUC 0.6249 0.6171 0.6324 0.6597 0.6192 0.6674 0.5341

h-mean pAUC 0.5236 0.5381 0.5338 0.5276 0.5441 0.5594 0.5054

Table 1: Baseline Autoencoder Scores

ToyCar ToyTrain fan gearbox pump slider valve
h-mean AUC 0.5604 0.5746 0.6156 0.6670 0.6189 0.5926 0.5651

h-mean pAUC 0.5637 0.5161 0.6302 0.5916 0.5737 0.5600 0.5264

Table 2: Baseline MobileNetV2 Scores

2. ARCHITECTURES

The first model described below builds on the work from [9]. In
particular, the encoder network has been updated to use 1D convo-
lutions rather than 2D. The input to this model is a spectrogram with
or without a Mel transformation. The second model builds on the
well-known WaveNet architecture [25] by adding an x-vector [26]
classification head after the dilated convolutions – in a sense, the
WaveNet functions as a time-series encoder for the x-vector compo-
nent. Both models mentioned above are trained to reduce the cross
entropy loss between predictions and the section IDs. The third
model differs from the first two models in that it is completely un-
supervised and attempts to learn several distributions of some Mel
spectrogram bins conditioned on the remaining bins. We also de-
scribe a fourth model, a 1D convolutional autoencoder, which we
did not include in our submission but we believe may be of inter-
est to the community. We call these approaches complementary
because of the different input modalities and learning approaches.
The last system described is an ensemble of the first three models
described above.

All our development was done using PyTorch [27] and spectro-
grams were computed using nnAudio [28]. The third model addi-
tionally used the Pyro [29] probabilistic programming library.

2.1. XVector1D

A high-level view of the architecture of the first model is shown in
Figure 1. We denote additive margin softmax as AMS [30].

Audio Standardizer Encoder x-vector AMSnnAudio
Section IDs

Figure 1: XVector1D High-level Architectures

In Figure 1, we use the term “standardizer” as a preprocess-
ing step done before passing data to the rest of the network. In the
simplest case, it is a batch-norm layer with the learnable parame-
ters disabled. In this way, this batch-norm will perform the usual
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ToyCar ToyTrain fan gearbox pump slider valve
STFT MEL STFT MEL STFT STFT STFT

AutoDIAL batch-norm AutoDIAL AutoDIAL AutoDIAL AutoDIAL AutoDIAL
C(128,192) C(128,192) C(128,192) C(128,192) C(128,192) C(128,192) C(128,192)

5 x C(192,192) 5 x C(192,192) 5 x C(192,192) 4 x C(192,192) 5 x C(192,192) 5 x C(192,192) 5 x C(192,192)
C(192,90)

Table 3: Input And Encoder Parameters

frequency-wise normalization once the running statistics have con-
verged. However, in other cases, “standardizer” can mean an Au-
toDIAL layer which mixes the statistics from the source and target
domains for normalization [4]. In early experiments we evaluated
the more general domain adaptation technique from [6]; however,
we found the performance similar to AutoDIAL but, in our imple-
mentation, much more computationally expensive.

The encoder used in this model includes 1D convolutions with
kernel size 3 and leaky-relu activations. The number of layers varied
with machine type as shown on Table 3 – in this table and going
forward, we use “C” to mean a 1D convolution.

The x-vector component used here remains largely the same as
in [9] except the interface to the encoder was adapted (as expected)
to accept the 1D encoder output.

2.1.1. Preprocessing

This model did not use any special preprocessing or augmentation.
The logarithm was taken for both the STFT and the Mel spectro-
grams. All spectrograms were computed with frequency min and
max values set to 100 and 8000 Hertz, respectively. Mel spectro-
grams were computed using 128 bins.

2.1.2. Training & Results

The model was trained to predict the section ID meta-data parame-
ter using the cross entropy loss function. We found that the spectro-
gram parameters had a big effect on the performance. Parameters
like the number of input samples, the number of points used for the
FFT, the hop length can have a significant effect. We generally used
the AdamW optimizer with the default learning rate of 1×10−3 and
weight decay set to 1 × 10−4. However, we used ASGD with the
default learning rate (and no weight decay) for gearbox. Generally,
the training losses converge more slowly using ASGD but some-
times the slower trajectory spends more epochs close to an optimal
region with respect to AUC and this can yield better results1. Dur-
ing training, random contiguous audio clips were sampled and the
spectrograms were computed on the fly using nnAudio [28]. The
training was usually run for 300 epochs, using all the training data
from the development and evaluation datasets. Lastly, we computed
the average embedding, during training, using the embedding from
the layer prior to the final AMS classification layer. At test time,
the average embedding was used to compute the cosine and Maha-
lanobis distances to the test embedding which served as additional
options for anomaly scores. Table 4 shows the results, and, Table 5
shows the effect on performance when using AutoDIAL.

2.2. WaveNet-XVector

We explored the use of a WaveNet model processing the audio sam-
ples directly. For details on the architecture we refer the reader to

1We used the harmonic mean of AUC and pAUC harmonic means to
assign a single score to a model configuration. For gearbox, the experiment
using ASGD had an 8.89% greater score.

ToyCar ToyTrain fan gearbox pump slider valve
batch size 128 64 128 64 128 128 64

input samples 16384 16384 16384 98000 16384 16384 98000
no. Mels 2048 128 2048 128 2048 2048 2048
no. FFT 4096 1024 4096 1024 4096 4096 4096

hop 80 512 512 80 512 512 512
scoring cosine mahalanobis softmax mahalanobis softmax softmax softmax

h-mean AUC 0.6702 0.7193 0.7171 0.8342 0.7799 0.7871 0.9032
h-mean pAUC 0.6233 0.6772 0.7295 0.7443 0.6684 0.6728 0.7724

Table 4: XVector1D Scoring Results

ToyCar ToyTrain fan gearbox pump slider valve
AutoDIAL 2.79% -12.90% 4.49% 23.41% 2.24% 1.31% 0.46%

Table 5: Relative Change In XVector1D Score Using AutoDIAL

the original publication [25]. In the original paper the authors ex-
plain that the model can be readily adapted to classification tasks
and in their classification experiment they add a mean pooling layer
after the dilated convolutions followed by “a few non-causal con-
volutions”. The training proceeds with two loss terms: one for
predicting the next sample and the other is the classification loss.
We follow this procedure in that we use a mean pooling layer (with
kernel size 10) and train with the two loss functions but instead
of using a few convolutions, we use an x-vector component, with
AMS top layer, as with the XVector1D model. In this way, one can
consider this model a variant of the XVector1D model which uses
an audio-only encoder. For the WaveNet encoder, we used a single
block with 14 layers. Gearbox and pump used 64 channels for the
dilation, residual, and skip channels. The other machines used 32
channels. For valve we used an AutoDIAL standarizer, and the rest
used a batch-norm.

2.2.1. Preprocessing

For valve and ToyTrain we used the Teager-Kaiser energy operator
(TKEO) to preprocess the audio [31, 32, 33, 34]. The motivation
was that, because the valve noises are sparse and impulsive events,
the noise suppression provided by the Teager-Kaiser operator would
improve the signal-to-noise (SNR) ratio in the valve recordings. De-
spite improving the results for valve and ToyTrain, the improvement
was modest.

2.2.2. Training & Results

To train this model, we used the Adamax optimizer with the default
learning rate for 200 epochs in the same manner as XVector1D, with
16384 input samples. Table 6 shows the performance of this model
using softmax scoring. Table 7 shows the effects on performance
due to AutoDIAL and TKEO independently.

ToyCar ToyTrain fan gearbox pump slider valve
batch size 128 128 128 64 64 128 128

h-mean AUC 0.5843 0.6641 0.8122 0.7156 0.7543 0.7184 0.7297
h-mean pAUC 0.5629 0.5696 0.8025 0.5964 0.6506 0.6239 0.6206

Table 6: WaveNet-XVector Scoring Results

2.3. NF-CDEE

For our third system, we began by attempting to model the probabil-
ity density function of the Mel spectrograms of the machine sounds,
for a single machine, using normalizing flows. We used the Pyro
[29] probabilistic programming library to develop this model. We
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ToyCar ToyTrain fan gearbox pump slider valve
AutoDIAL -0.54% -0.11% -3.13% -2.62% -1.71% -2.22% 4.97%

TKEO -3.15% 7.69% -27.04% -5.98% -9.70% -14.08% 3.30%

Table 7: Relative Change On WaveNet-XVector Score Using Auto-
DIAL & TKEO

found that training a model to fit a distribution with the same di-
mensions as Mel bins to be somewhat unstable. In order to improve
the stability we instead estimated several conditional densities and
trained them in a single model, minimizing the sum of their negative
log-likelihoods. We consider this model an ensemble of conditional
density anomaly detectors. Hence, we call this model NF-CDEE,
because it uses normalizing flows and it is a conditional density es-
timator ensemble. Each conditional density estimator fits the distri-
bution of a n-bin segment of input spectrograms conditioned on the
remaining bins. This reduces the instability due to dimensionality.
The parameter n and the amount of overlap are tunable by the user.
For this work, we chose n = 32 with no overlap. Each normaliz-
ing flow uses a single conditional spline with 16 count-bins and the
default hidden layer dimensions – these are also tunable but in our
experiments they did not significantly affect the performance.

To summarize, each estimator outputs the probability
p(sA|sAc) where s is a vector of dimension equal to the number
of Mel bins m that is indexed by the set I = {1, . . . ,m}. A is an
n-element subset of I, and Ac is its complement I −A. We define
the likelihood of the normal state as:

p(normal) =
∏
i

p(sAi |sAc
i
) (1)

where i ∈ [1, . . . , k] and k is a positive integer provided by the
user – it is the number of estimators in the ensemble. Here, we used
A1 = {1, . . . , 32}, A2 = {33, . . . , 64}, and so forth. To train the
model, we minimize the negative logarithm of p(normal). There-
fore, the output of NF-CDEE is the sum of the individual negative
log-likelihoods.

2.3.1. Training & Results

To train this model we converted the input audio to 256-bin Mel
spectrograms, computed using 8192-point FFTs with hop-length
512, and applied frequency-wise normalization before passing to
the conditional density estimators. Unlike the self-supervised mod-
els, the spectrograms were pre-computed and spectrogram windows
were passed to the network in the same manner as [35]. Each model
was trained with all the sections of the development (or evaluation)
training data, per machine type – except for fan for which we trained
a model for each section. To further reduce training instability,
caused by the normalizing flow determinant computation, we take
the mean across the time dimension. This last step was important
for stabilizing the training of the ensemble. As previously stated the
loss function used was the sum of the negative log-likelihoods and
this also served as the anomaly score. Figure 2 shows the inference
process.

For the optimizer, we used the same optimizer as the XVec-
tor1D, with gradient clipping. In our experiments this model gener-
ally needs to train for about 50 epochs. Table 8 shows the results,
sampling 192 spectrogram frames in batches of 32.

Spectrograms

Mean 
Operation

+

log-likelihood log-likelihoodlog-likelihood

Standardizer

-loss

Figure 2: NF-CDEE Inference

ToyCar ToyTrain fan gearbox pump slider valve
h-mean AUC 0.8657 0.7797 0.7866 0.8081 0.6993 0.7483 0.6130

h-mean pAUC 0.7831 0.6031 0.6024 0.6513 0.5655 0.6054 0.5275

Table 8: NF-CDEE Scoring Results

2.4. 1D CNN Autoencoder

The model described here is a 1D convolutional autoencoder that
reconstructs (Mel) spectrograms. We excluded this model for sev-
eral reasons including that, like NF-CDEE, its performance was
strongest for ToyCar but NF-CDEE was also strong for other ma-
chines. Additionally, WaveNet-XVector offered stronger fan perfor-
mance than either XVector1D or NF-CDEE and resulted in a better
ensemble when including three models.

The architecture of this model is shown in Table 9. The bot-
tleneck for this autoencoder was inspired by [36] in that the time
dimension was mostly preserved2. In our post-DCASE2020 analy-
ses, we found that preserving the time dimension to be a key factor
for the success of the autoencoder in [36]. Additionally, we found
the scoring methods in [36] to be effective at improving AUC per-
formance in (spectrogram) autoencoders. For example, the scoring
methods in [36] can improve the results from [35]. Table 9 shows
the architecture of this model, which uses leaky-relu activations,
kernel size 3, and a batch-norm standardizer.

2In [36] the time dimension was not reduced at all because causal con-
volutions were used.

ToyCar ToyTrain fan gearbox pump slider valve
C(128,256) C(128,192) C(128,256) C(128,256) C(128,192) C(128,192) C(128,192)

3 x C(256,256) 4 x C(192,192) 2 x C(256,256) 5 x C(256,256) 3 x C(192,192) 5 x C(192,192) 3 x C(192,192)
C(256,20) C(192,30) C(256,10) C(256,30) C(192,90) C(192,90) C(192,90)
C(20,256) C(30,192) C(10,256) C(30,256) C(90,192) C(90,192) C(90,192)

3 x C(256,256) 4 x C(192,192) 2 x C(256,256) 5 x C(256,256) 3 x C(192,192) 5 x C(192,192) 3 x C(192,192)
C(256, 128) C(192, 128) C(256, 128) C(256, 128)) C(192, 128) C(192, 128) C(192, 128)

Table 9: 1D CNN Autoencoder
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2.4.1. Training & Results

The training for this model followed the same approach as NF-
CDEE, using spectrogram windows as in [35]. The loss function
used was mean absolute error (MAE). However, for gearbox, fan,
and ToyCar we attached an x-vector classifier head to the bottleneck
layer and additionally included a cross-entropy loss term for the
meta-data. Moreover, for gearbox, fan, and ToyCar we employed a
special weighting scheme during training and at test time.

The intuition behind the weighting is that if one knew the SNR
of a frequency bin, one could weigh the reconstruction loss us-
ing this information, giving greater importance to bins with greater
SNR. Estimating the SNR is not straightforward, so we used the
frequency bin variance in its place. The weight vector w is pre-
computed with elements given by wf = 1

σ2
f

, where σ2
f denotes the

variance of the f th Mel bin3, using the training data for each domain
and each section.

Table 10 shows the results sampling 192 frames, from 128-bin
Mel spectrograms, in batches of 64. The spectrogram hop length
was set to 512. The E1 and E2 scoring methods referenced in Table
10 come from [36] and are repeated here for the reader’s conve-
nience.

E1(X, X̂) =
1

FT

F∑
f=1

[
T∑
t=1

(
Xf,t − X̂f,t

)]2
(2)

and

E2(X, X̂) =
1

FT

F∑
f=1

∣∣∣∣∣
T∑
t=1

(
Xf,t − X̂f,t

)∣∣∣∣∣ (3)

where X ∈ RF×T and X̂ ∈ RF×T are the true and reconstructed
spectrograms. F and T are natural numbers that denote the fre-
quency and time dimensions, respectively.

ToyCar ToyTrain fan gearbox pump slider valve
scoring E2 MAE E1 E1 E1 E2 E2
no. FFT 8192 2048 8192 4096 2048 8192 4096

h-mean AUC 0.8663 0.7180 0.7265 0.7287 0.6981 0.7022 0.6117
h-mean pAUC 0.7502 0.6023 0.5738 0.5992 0.5951 0.5782 0.5230

Table 10: 1D CNN Autoencoder Scoring Results

2.5. Ensemble

For the last system we combined the first three models (described
in Sections 2.1, 2.2, and 2.3) by first standardizing the training data
scores and then searching over a grid of convex combinations, sim-
ilar to [37].

We could have included the autoencoder, for example, by en-
sembling separately with each system but we did not have time
to explore this or other ensembling alternatives. As it stands, this
model influenced the development of XVector1D, particularly its
encoder, and the selection of hyperparameters for NF-CDEE. Table
11 shows the results of the ensemble of the first three models.

3The weight vector was also scaled to have a max element of 1.

ToyCar ToyTrain fan gearbox pump slider valve
WaveNet weight 0.03 0.03 1 0.04 0.32 0.02 0

XVector1D weight 0.06 0.55 0 0.61 0.68 0.52 1
NF-CDEE weight 0.91 0.42 0 0.35 0 0.46 0

h-mean AUC 0.8745 0.7756 0.8122 0.8613 0.7958 0.8287 0.9032
h-mean pAUC 0.7837 0.7048 0.8025 0.7635 0.6790 0.6925 0.7724

Table 11: Ensemble Scoring Results

3. CONCLUSIONS

We have outlined our submission to the DCASE2021 Challenge
Task 2, which featured a domain shift between the training and test
distributions. We found it concerning that domain adaptation meth-
ods that seem to do well for other modalities, especially vision, do
not seem to work as well for audio (at least in our implementa-
tions). This discrepancy gives the DCASE2021 Challenge a greater
relevance, because it highlights the need for the audio community
to generate more effective domain adaptation methods for audio.

As the XVector1D, WaveNet-XVector, and NF-CDEE models
(respectively) ranked 11, 52, and 31, it is clear that the three were
indeed complementary and that ensembling is a good option for im-
proving results under domain shifted testing conditions. We do not
find the lower individual ranks too concerning because the scores
are for single models, as opposed to ensembles, and because the
rankings do not fully reflect the performance on individual machine
categories.

Of the models we investigated, we find NF-CDEE to be partic-
ularly promising because it performed well and is unsupervised. In
real-world settings it is not always practical to leverage meta-data,
even when it is possible to do so. Moreover, we expect the ensem-
bling nature of the model to perform better under domain shifted
conditions. We plan to develop this model further going forward.
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