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ABSTRACT

This paper details our work towards leveraging state-of-the-art ASR
techniques for the task of automated audio captioning. Our model
architecture comprises of a convolution-augmented Transformer
(Conformer) encoder and a Transformer decoder to generate nat-
ural language descriptions of acoustic signals in an end-to-end
manner. To overcome the limited availability of captioned audio
samples for model training, we incorporate the Audioset-tags and
audio-embeddings obtained from pretrained audio neural networks
(PANNs) as an auxiliary input to our model. We train our model
over audio samples from Clotho & AudioCaps datasets, and test
over Clotho dataset’s validation and evaluation splits. Experimental
results indicate that our trained models significantly outperform the
baseline system from DCASE 2021 challenge task 6.

Index Terms— Automated Audio Captioning, Conformer, ES-
PNet, PANNs

1. INTRODUCTION

Automated audio captioning was first proposed by [1] as a task of
generating descriptive captions for a give audio signal using the con-
cepts of audio processing and natural language processing. Datasets
for this task consist of audio samples mapped to at least one corre-
sponding human-generated caption [2, 3]. To generate a caption
of sufficient quality, it is essential that the training model distills
meaningful audible representations from an audio signal.

Similar to established image caption generators [4], a typi-
cal audio captioning model also comprises of an encoder-decoder
framework. The encoder computes an encoded representation of
relevant acoustic features in an input audio sample, and the decoder
outputs a sequence of tokens using the encoded representation to
form a suitable descriptive caption [1, 5]. Popular and effective
frameworks for audio captioning in literature comprise of CNN en-
coders and Transformer decoders. A 10-layer CNN encoder and a
Transformer decoder with multi-head self-attention was proposed
by [5], where the CNN encoder was first pretrained for a multi-
label classification task. To overcome the issue of limited number of
training samples, [6] used a mix-up based data augmentation to cre-
ate training samples from convex combinations of two given audio
samples and their word token embeddings. Reinforcement learning
in the form of self-critical sequence training (SCST), introduced for
image captioning [7], was also explored for audio captioning by [8]

to directly optimize the evaluation metrics (BLEU, CIDEr etc.) in-
stead of the cross-entropy loss during greedy decoding at test-time.

Our proposed method is based on state-of-the-art auto-
matic speech recognition (ASR) techniques such as convolution-
augmented Transformer (Conformer) [9] and the fusion of a lan-
guage model, incorporated in the end-to-end speech processing
toolkit ESPnet [10]. Furthermore, we utilize the pretrained audio
tagging model PANNs [11] to extract auxiliary information (e.g.,
Audioset [12] tags and embedding vector) and integrate them with
the ASR model, enabling us to generate consistent captioning re-
sults. The contributions of this paper are as follows:

• We apply an attention-based encoder-decoder with the Con-
former architecture, which allows capturing both local and
global contexts in the input sequence. We also employ the lan-
guage model trained on the captions and integrate its score with
shallow fusion, resulting in a more stable prediction.

• We also introduce a pretrained audio tagging model PANNs
to extract the auxiliary information, including Audioset tags
and embedding vectors, and then utilize them as the additional
inputs for the encoder-decoder model.

• Experimental evaluation with DCASE 2021 Task 6 dataset [13]
shows that the proposed framework significantly outperforms
the baseline system. Our best trained model shows a SPIDEr
score of 0.224 and 0.246 on the development-validation and
development-evaluation sets, respectively.

• This work expands on our DCASE2021 challenge report [14]
with detailed description of the proposed framework and key
insights into the contributions of auxiliary input features and
language model fusion.

• Towards supporting accessible and reproducible research, we
intend to release our audio captioning system and pretrained
models to the ESPNet toolkit1.

2. PROPOSED METHODOLOGY

2.1. Overview

Fig. 1 illustrates an overview of the proposed method. Similar
to other speech-related tasks, we use log-mel filterbank features
as the primary input. Data augmentation is performed over these

1https://github.com/chintu619/espnet/tree/aac_
wordtokens/egs/clotho/aac_word
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Figure 1: An overview of the proposed network architecture based on a Conformer encoder and a Transformer decoder. SpecAug based data
augmentation is performed on the log-mel filterbank features. The pretrained wavegram-logmel-CNN14 PANNs model extracts the 527-tags
vector and 2,048-embedding vector, and are fed as auxiliary inputs. Finally, a shallow fusion of decoder output and RNN-LM is performed
to generate the output caption.

primary features to improve noise robustness. In addition to the
primary input, we employ auxiliary inputs such as Audioset tags
and an embedding vector, which are extracted with the pretrained
audio tagging model PANNs [11]. Both inputs are fed into the
attention-based encoder-decoder model. Inspired by the success of
Conformer-based models for tasks like speech recognition, transla-
tion, and separation [15], our model uses a Conformer encoder for
processing these audio features and a Transformer decoder to pro-
cess words in a corresponding caption. To further improve the per-
formance, we introduce the RNN-based language model and com-
bine it with the encoder-decoder model in the decoding stage. The
following subsections describe each of the components of our pro-
posed Conformer model.

2.2. Encoder-Decoder Framework

The encoder incorporates a convolution sub-sampling layer and sev-
eral Conformer blocks, where each block consists of a first feed-
forward module (FFN), a multi-head self-attention (MHSA) mod-
ule, a convolution module and a second feed-forward module in the
aforementioned sequence. Similar to Transformer ASR models, a
residual connection is added to the output of the feed-forward mod-
ule followed by a layer normalization (LN) [16]. To regularize the
network, the module employs dropout and Swish activation [17].

The self-attention module uses relative positional encoding in
order to make the encoder robust to varying input length. This fea-
ture makes Conformer an ideal encoder for audio samples of vary-
ing length as seen in the present task. This module also employs
dropout and a residual connection to regularize the network. For
an input sequence X ∈ RT×datt

, where T is the number of time
frames and datt is the attention dimension, the positional encod-
ing and regularization are computed according to Eq. 1. Finally the
convolution module employs a point-wise convolution, a gated lin-
ear unit (GLU) activation [18], 1-dim depth-wise convolution layer,
a batch normalization layer, Swish activation and a point-wise con-
volution. Both feed-forward modules employ a half-step scheme,
and a residual connection and dropout are again used for regular-
ization as shown in Eq. 2.

X = X+ Dropout(MHSA(LN(X))) (1)
X = X+ 0.5× Dropout(FFN(LN(X))) (2)

The decoder also incorporates several Transformer blocks,
where each block consists of a multi-head self-attention layer, and

a linear layer with ReLU activation sandwiched between two layer
normalization layers.

2.3. Auxiliary Input Features

To improve the generalization ability of our model, we provide an
auxiliary input to our encoder framework, similar to the use of ro-
bust audio embeddings in speaker recognition tasks [19]. For this
purpose, we use CNN14 - one the PANNs models trained on the
large scale Audioset dataset of over 5,000 hours of audio samples
labeled with 527 audio tags. The CNN14 model is a wavegram-
logmel-CNN system trained on 32kHz audio samples using 14 con-
volution layers. The model outputs a 527-tags vector, whose each
element corresponds to the prediction of an audio tag. In addition
to this 527-tags vector, we also extract a 2,048-embedding vector
from each audio sample that is inputted to final classification layer.

The tags and/or embeddings obtained using PANNs are used as
an auxiliary input to our model. When using both the tags and em-
beddings, the two feature vectors are simply concatenated to form
a single column vector. These features are first L2 normalized and
then passed through a feed-forward layer to be projected to the same
size as that of the attention dimension. The projected features are
finally added to the output of the Conformer encoder, before being
sent as an input to the Transformer decoder.

2.4. Shallow Fusion with Language Model

We also separately train a word-token RNN language model (RNN-
LM) using the captions in the training data and integrate it with the
decoder using shallow fusion [20]. During inference, for each par-
tial hypothesis h, the decoder combines its attention scores αatt(h)
with the look-ahead word-token scores αlm(h) provided by RNN-
LM according to Eq. 3, where γ is a scaling factor.

α(h) = αatt(h) + γ · αlm(h) (3)

3. EXPERIMENTS

3.1. Data Preparation and Pre-processing

Our proposed model takes 16 kHz audio samples as input and com-
putes 80 log-mel energies from each 64 ms frame, shifted every 32
ms. Accordingly, all the audio files in Clotho-v2 dataset were down-
sampled from 44.1 kHz to 16 kHz. The overall development split of
the Clotho-v2 dataset has 3,839 training samples, 1,045 validation
samples and 1,045 evaluation samples. Each audio sample is 15-30
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seconds long and contains 5 human generated captions with 8-20
words each. Since the Clotho-v2 dataset is relatively small to train
large neural networks, we additionally augment the training data
with roughly 46,000 single caption audio samples from the Audio-
Caps dataset [3]. Audio samples in this dataset are carefully chosen
from the 2M samples in Audioset dataset [12]. Each audio sample
is roughly 10 seconds long.

We perform input feature augmentation using SpecAug [21]
consisting of three kinds of deformations - time warping, frequency
masking and time masking. We set the maximum time warp pa-
rameter to W = 5, and randomly choose w ∈ [0,W ] such that
the log-mel filterbank feature matrix is warped by w. Frequency
and time masking are based on Cutout [22] regularization technique
which masks a randomly chosen rectangular portion of the log-mel
filterbank matrix. Dimensions of the mask were chosen randomly
based on the maximum frequency and time masking parameters of
Fm = 30 and Tm = 40 respectively.

3.2. Comparison Models and Training Parameters

3.2.1. Baseline System

The DCASE 2021 challenge task 6 provided a baseline encoder-
decoder framework consisting of a 3 layer bi-directional GRU en-
coder, and a decoder with one GRU layer and one classification
layer. The input acoustic features are extracted using 64 log-mel
energies estimated over a 46ms frame, shifted every 23ms. Each
encoder and decoder GRU layer has 256 bi-directional features, and
the classification layer outputs the probability of 4637 unique words
in each decoder iteration (time-step).

3.2.2. Proposed Model

The proposed Conformer model used in our experiments has 16 en-
coder layers and 4 decoder layers, each with 1,024 units along with
4 heads, datt = 256 for attention layers and a depth-wise con-
volution with kernel size of 15. For better predictive performance
through model ensemble, we also explored several variations in the
dimensions of the proposed model. Decoding module for a model
ensemble performs posterior averaging of the attention score output
of constituent model decoders. A variation of the proposed Con-
former model was trained with smaller encoder-decoder layers hav-
ing 512 units each. Another variation was trained with a smaller
attention framework having 128-dim layers with 2 heads. Final
model variation was trained with above mentioned smaller atten-
tion framework, but with a larger kernel size of 31.

In addition to the log-mel energies, we extract a softmax vector
of 527-tags and a 2,048-embedding vector from each audio sam-
ple using the CNN14 PANNs model [11] as detailed in Section 2.3.
Each element of 527-tags vector represents the probability of a cor-
responding class-label in the Audioset ontology. All the proposed
model variations employ shallow fusion using a 2-layer RNN-LM
trained for 25 epochs with a batch-size of 64 and dropout of 0.5.
Scaling factor γ for shallow fusion is set to 0.2.

3.2.3. Hyper-Parameters

During training, 64 audio-caption pairs were batched together and
trained for 50 epochs with a learning-rate of 0.5, dropout of 0.1,
cross-entropy loss function and noam optimizer [23]. To prevent ex-
ploding gradients, we set the gradient threshold to 5. Label smooth-
ing [24] was set to 0.1 to avoid high confidence training predictions.
Upon completion of training, we average the model parameters over

the final-10 epochs and this averaged model was used for inference.
During inference, beam search was performed with a beam-size of
10 and RNN-based language model weight of 0.2. We note that the
above hyper-parameters are optimized based on our prior experi-
ence in tuning ASR systems.

3.3. Evaluation Metrics

Experimental evaluation for audio captioning is conducted using
six metrics: BLEU-n [25], ROUGE-L [26], METEOR [27], CIDEr
[28], SPICE [29] and SPIDEr [30]. Precision of output captions for
1,2,3,4-grams (contiguous sequence of n words) are evaluated by
BLEU-n. F-measure between output and ground-truth captions is
estimated by ROUGE-L by estimating their longest common sub-
sequence. METEOR is a machine translation metric which com-
putes a harmonic mean of 1-gram precision and recall between out-
put and ground-truth captions. CIDEr computes the average co-
sine similarity of n-grams between output and ground-truth cap-
tions. SPICE evaluates the semantic similarity between output and
ground-truth captions by first performing lemmatisation of captions
and then computing the F-score between their scene graphs. Lem-
matisation maps all the inflected forms of a word to its root form,
and scene graphs are a semantic representation which encode the
objects, attributes and relations present in captions. SPIDEr simply
computes an average score of CIDEr and SPICE metrics.

4. RESULTS

The performance of our trained models were evaluated on both the
development-validation and development-evaluation splits and are
summarized in Table 1 and Table 2. All our proposed models out-
perform the DCASE 2021 baseline system by a significantly mar-
gin. Summarized results also show the contribution from various
components of our proposed model: encoder-decoder, self-attention
and auxiliary features.

4.1. Observations

We observe a slight degradation in performance when varying our
model’s architecture as compared to the baseline Conformer model.
However these variations help to improve the performance of a
model ensemble. Auxiliary input features of tags and embeddings
were able to improve the scores of most metrics, especially over
the development-validation split. We also observe that augmenting
the training data with the development-evaluation split was indeed
able to improve the proposed Conformer’s performance over the
development-validation split and vice-versa. Model ensemble was
also performed over various combinations of our trained models,
and was further able to increase the overall system performance.

4.2. Discussion

4.2.1. Understanding Auxiliary Features

We explore the individual contribution of extracted tags and em-
beddings towards the performance boost provided by the auxiliary
input features. Table 3 details the performance of the proposed
Conformer model when trained with only the extracted 2,048-
embeddings and 527-tags as secondary inputs. Although the ex-
tracted tags provide sufficiently good CIDEr score, using both the
tags and embeddings improves the SPICE score.

We additionally observed that the captions generated using
Conformer model with auxiliary features for 520 samples (∼ 25%),
among the combined 2090 validation and evaluation samples, had
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Method BLEU-1,2,3,4 ROUGE-L METEOR CIDEr SPICE SPIDEr
Baseline 0.389 0.136 0.055 0.015 0.262 0.074 0.084 0.033 0.054
Conformer 0.512 0.317 0.205 0.131 0.336 0.148 0.310 0.100 0.205

smaller enc-dec 0.500 0.311 0.203 0.129 0.336 0.144 0.299 0.099 0.199
smaller attention 0.490 0.307 0.199 0.127 0.332 0.143 0.310 0.096 0.203

+ larger-kernel 0.496 0.307 0.198 0.124 0.336 0.143 0.297 0.098 0.198
+ auxiliary features 0.521 0.330 0.217 0.138 0.345 0.154 0.323 0.107 0.215
+ dev-eval split 0.515 0.321 0.207 0.131 0.340 0.149 0.314 0.101 0.208

Ensemble 0.533 0.343 0.226 0.146 0.355 0.154 0.341 0.106 0.224

Table 1: Scores of evaluation metrics for the development-validation split.

Method BLEU-1,2,3,4 ROUGE-L METEOR CIDEr SPICE SPIDEr
Baseline 0.378 0.119 0.050 0.017 0.078 0.263 0.075 0.028 0.051
Conformer 0.534 0.343 0.233 0.158 0.354 0.157 0.351 0.106 0.228

smaller enc-dec 0.524 0.331 0.219 0.144 0.356 0.153 0.329 0.103 0.216
smaller attention 0.506 0.320 0.212 0.140 0.349 0.152 0.337 0.102 0.219

+ larger-kernel 0.518 0.330 0.224 0.150 0.355 0.154 0.340 0.105 0.223
+ auxiliary features 0.536 0.341 0.225 0.146 0.357 0.160 0.346 0.108 0.227
+ dev-val split 0.541 0.346 0.231 0.152 0.356 0.161 0.362 0.110 0.236

Ensemble 0.546 0.356 0.243 0.165 0.369 0.163 0.381 0.110 0.246

Table 2: Scores of evaluation metrics for the development-evaluation split.

a SPICE score of zero. Note that SPICE score is measured over
all 5 ground-truth captions and these zero scores can imply a com-
plete semantic mismatch for a significant portion of testing samples.
Among these zero score samples, we also observe that extracted Au-
dioSet tags (auxiliary features) are sometimes match very closely
with the caption words. Consider ‘18 Little Group.wav’,
an audio sample from validation split with a ground-truth caption of
‘sea animals make strange blips, groans and other vocalizations’.
Our generated caption is ‘a cat is meowing and making noises’.
However, the top-2 AudioSet tags extracted for this audio sample
are ‘Whale vocalization’ and ‘Animal’. A potential improvement
from this analysis would be to increase the weight of projected aux-
iliary features when mixing them with the encoder output. To better
integrate the extracted tags and embeddings, it is also possible to
use an additional pretrained encoder from the PANNs model, and
fine-tune the auxiliary features during training.

Method CIDEr SPICE SPIDEr
Conformer + auxiliary input 0.323 0.107 0.215

- 527-tags 0.325 0.102 0.214
- 2048-embeddings 0.315 0.098 0.207

Conformer + auxiliary input 0.346 0.109 0.227
- 527-tags 0.346 0.104 0.225
- 2048-embeddings 0.342 0.106 0.224

Table 3: Evaluating contributions of PANNs tags and embeddings
towards model performance on development-validation split (top)
and development-evaluation split (bottom).

4.2.2. Evaluating Shallow Fusion with RNN-LM

Shallow fusion with a pretrained language model is equivalent to a
model ensemble approach where the scores of the acoustic model

and the language model are combined. Table 4 shows the perfor-
mance improvement, especially of CIDEr scores, provided by an
RNN-LM optimized on the word sequences in the training dataset.

Method CIDEr SPICE SPIDEr
Conformer 0.310 0.100 0.205

- RNN-LM 0.300 0.098 0.199

Conformer 0.351 0.106 0.228
- RNN-LM 0.344 0.105 0.225

Table 4: Evaluating contribution of RNN-LM towards model per-
formance on development-validation split (top) and development-
evaluation split (bottom).

5. CONCLUSION

This work provides a detailed description and analysis of our sub-
mission to 2021 DCASE challenge Task 6: automated audio cap-
tioning. The proposed methodology employs existing state-of-the-
art ASR techniques including Conformer-encoder, Transformer-
decoder, data augmentation, Audioset tags & embeddings as aux-
iliary inputs and shallow fusion with a pretrained RNN language
model. Our experiments qualify the ability of ASR techniques for
effective captioning of audio samples by significantly outperform-
ing the DCASE baseline system. Leveraging ASR techniques for
audio captioning opens potential research directions towards devel-
oping an integrated framework for joint modeling of ASR and cap-
tioning tasks, and will be tackled as part of our future work.
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