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ABSTRACT

In this paper, we propose a system for audio-visual scene classifica-
tion with a multi-modal ensemble way consisting of three features:
(1) Log-mel spectrogram audio features extracted by CNN variants
from audio modality. (2) Frame-wise image features extracted by
CNN variants from video modality. (3) Another frame-wise im-
age features extracted by OpenAI CLIP models which are trained
with a large-scale web crawling text and paired image dataset under
contrastive learning framework. We trained the above three models
respectively and made an ensemble weighted by class-wise confi-
dences of each model’s semantic outputs. As a result, our ensemble
system reached 0.149 log-loss (official baseline: 0.658 log-loss) and
96.1% accuracy (official baseline: 77.0% accuracy) on TAU Audio-
Visual Urban Scenes 2021 dataset which are used in DCASE2021
Challenge Task1B.

Index Terms— Audio-visual Scene Classification, Multi-
modal, CLIP, Convolutional Neural Network, Vision Transformer,
Log-mel Spectrogram, SpecAugment, Random Erasing

1. INTRODUCTION

Audio-visual scene classification is one of the classification prob-
lems which uses both audio and video modalities for classifying the
defined scene. Like human perception, we can expect to create a
better model by exploiting complementary information from differ-
ent modalities.

As recent research, several works tackle audio-visual joint
learning. In [1, 2, 3, 4], the recognition performance of the audio-
visual models is enhanced with a self-supervised manner using
multi-modal information in each way. From action recognition per-
spectives, [5] proposed the Audiovisual SlowFast Networks, which
utilize the SlowFast Networks [6] mainly used in video recognition
tasks. In this research, audio features are concatenated to the im-
age features through the model’s internal pathway for multi-modal
fusion. Other general multi-modal architectures are also used for
audio-visual recognition tasks. [7] proposed the general perception
architecture called Perceiver, which can treat image and audio fea-
tures in the same way through concatenating the over 50 thousand
dimension inputs. For leveraging audio-visual recognition perfor-
mance using multi-modality information, various research has been
proposed vigorously.

This year, Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge 2021 [8] holds the audio-visual scene
classification task as Task1B [9] with a large-scale dataset called
TAU Audio-Visual Urban Scenes 2021. This dataset provided by
the organizer contains synchronized audio and video recordings
from 12 European cities in 10 different scenes [10].

This paper describes the details of our team’s (team name: LD-
SLVision) solution for Task1B of DCASE2021. For this task, we
developed various audio classification models and video classifica-
tion models, and created final submissions by fusing those models
using an ensemble method and a post-processing technique.

The features of our system can be concluded as three folds:
1) Instead of learning raw audio waves directly, we only used

log-mel spectrogram features extracted from audio files as inputs,
and leveraged those features with strong CNN variants which are
used vigorously in the recent computer vision community.

2) We developed CLIP Late Fusion Network, which uses ex-
tracted features from various CLIP image encoders [11] as inputs
for a multi-branch network. As far as we know, this is the first
approach which uses CLIP models for audio-visual scene classifi-
cation task.

3) We applied a post-processing technique to suppress the value
of log-loss, which is defined as the competition’s metric.

2. PROPOSED SOLUTION

In this section, we describe the details of our solution for
DCASE2021 challenge Task1B. For tackling the audio-visual scene
classification task, we created various audio classification models
and video classification models respectively in each modality. After
created various models, we integrated these models with ensemble
method and applied post-processing technique to suppress the log-
loss value for final submissions. The overview of our multi-modal
fusion approach is shown in Fig. 1.

2.1. Audio Classification Models by Log-mel CNN Variants

For utilizing the audio modality of the provided dataset, we created
various audio classification models with 1 second split audio files.
The test dataset is provided as 1 second audio files in this compe-
tition. Therefore, we divided each 10 seconds audio files provided
as development dataset for DCASE2021 Task1B into ten 1 second
audio files.

As inputs for audio classification models, we extracted log-mel
spectrograms with delta/delta-delta features, which are also used
in DCASE2020 Task1A winner’s solution [12]. We used librosa
library [13] for creating log-mel spectrograms. The parameters of
log-mel spectrogram transformation are as follows: sampling rate
(sr) is 48kHz, the number of mel bins (n mels) is 256, the length
of FFT window (n fft) is 4096, and the number of samples between
successive frames (hop length) is 512.

About the choice of inputs type (e.g. log-mel spectrogram,
raw audio waveform, etc.), we referred to the PANNs paper [14]
which proposed a widely used audio classification model. In the
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Figure 1: The overview of our system for DCASE2021 challenge Task1B. This picture shows the case of S02 in Table 3.

experiments of PANNs paper, the recognition performance of log-
mel spectrogram classification with ResNet-38 [15] is competitive
with that of wavegram log-mel CNN which is proposed as state-of-
the-art architecture in the paper. Therefore, we only selected log-
mel spectrogram features as inputs, and uses these features with
strong CNN backbones (EfficientNet [16] with Noisy Student [17],
ResNeSt [18], RegNet [19]) which are better than ResNet-38 in the
recent computer vision community.

2.2. Video Classification Models by CNN Variants

For creating video classification models, we firstly extracted 12 im-
age frames from 10 seconds video file with equal interval. After ex-
tracted all image frames, we created standard image classification
models with strong CNN variants. We selected three backbones
(ResNeSt [18], RegNet [19], HRNet [20]) for expecting different
characteristics. These models have better recognition performances
than ResNet in ImageNet classification task, and the combination of
these models have achieved top accuracy in multi-label multi-class
disaster scene classification task (LADI-only section) [21].

2.3. Video Classification Models by CLIP Late Fusion Network

For leveraging text modality and large amounts of publicly available
data, we used CLIP image encoders which are trained with various
web image and text caption pairs using contrastive learning method
[11] [22]. With CLIP image/text encoders, we first conducted a
zero-shot prediction on the provided TAU dataset. As a result, even
without training, CLIP models achieved strong recognition perfor-
mances which are competitive with our trained audio classification
models as shown in Table 2.

For boosting the CLIP-based approach, we utilized CLIP mod-
els by adding a learnable multi-branch network, which we call CLIP
Late Fusion Network. The architecture of CLIP Late Fusion Net-
work is shown in Table 1. For this multi-branch network, we ex-
tracted image features from three types CLIP image encoders and
feed these features as inputs to the network. In the SI-Score paper
[23] which compares various CNN/ViT/CLIP models, the authors
show that each CNN/ViT/CLIP models have different characteris-

tics. Therefore, we selected to use not a single image encoder but
multiple image encoders (i.e. ResNet50x4, ResNet101, Vit-B/32)
for creating more diversity in input features.

Table 1: The architecture of CLIP Late Fusion Network.

RN50x4 (dim:640) RN101 (dim:512) ViT-B/32 (dim:512)
Linear(640, 512) Linear(512, 512) Linear(512, 512)

BatchNorm1d(512) BatchNorm1d(512) BatchNorm1d(512)
ReLU() ReLU() ReLU()

Dropout(p=0.2) Dropout(p=0.2) Dropout(p=0.2)
Linear(512, 256) Linear(512, 256) Linear(512, 256)

concatenation of 256*3 dimension
Linear(256*3, 128)

Linear(128, 10)

2.4. Ensemble and Post-Processing

After created audio and video classification models, we used these
models to output the confidences for each defined 10 scene classes.
For the validation of the official fold1 split, we firstly inferred con-
fidences for each 10 split audio files and 12 image frame files from
each 10 seconds synchronized files. For each 10 seconds file, we
equally made an ensemble of the output confidences of each split
audio file and image frame file. In the ensemble process, audio
classification models are generally worse than video classification
models (Table 2). Due to the reason, we used the good accuracy’s
class score (e.g. In fold1 validation, the recognition performance of
A04 for tram class is competitive with that of C04/V04.) Therefore,
we used only bus/park/tram classes’ confidence scores and discard
the other classes in ensemble. In addition, for each sample, we re-
placed the confidences of video models with those of audio models
when the maximum confidence of 10 classes from video models is
0.20 lower than that of audio models. This method improves the
recognition performance on night scenes, to which video models
have low confidences due to visual difficulty, but audio models can
correctly classify the class (Fig. 2).
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Table 2: Summary of our created models. In the baseline system, the Audio-only model is trained with 10 sec. audio files, but we trained our
audio classification models with 1 sec. audio files as test audio files are provided as 1 sec. audio files. When we train our audio classification
models with 10 sec. audio files, the recognition performances are more boosted than that of 1 sec. models. About CLIP models indexed as
C01-C03, we provided original labels as sentences to the CLIP text encoders and evaluated the models with the CLIP image features.

Index Architecture Audio Video Notes Logloss Accuracy
B01 OpenL3’s model log-mel CNN - Baseline model of Audio-only 1.048 65.1
A01 RegNet-6.4F log-mel CNN - Training with 1 sec. audio files 0.711 76.6
A02 ResNeSt-50d log-mel CNN - Training with 1 sec. audio files 0.732 76.9
A03 TF-Efficientnet-B1-NS log-mel CNN - Training with 1 sec. audio files 0.821 77.2
A04 A01-A03’s models log-mel CNN - Ensemble of A01-A03 0.721 78.1
B02 OpenL3’s model - CNN Baseline model of Visual-only 1.648 64.9
V01 RegNet-6.4F - CNN - 0.328 90.0
V02 ResNeSt-50d - CNN - 0.367 91.7
V03 HRNet-W18 - CNN - 0.336 90.9
V04 V01-V03’s models - CNN Ensemble of V01-V03 0.316 92.4
C01 ResNet-101 - CLIP CNN No Training 0.671 76.7
C02 ResNet-50x4 - CLIP CNN No Training 0.668 74.5
C03 ViT-B/32 - CLIP ViT No Training 0.725 72.5
C04 C01-C03’s models - CLIP CNN&ViT Late Fusion of C01-C03 0.273 90.9
B03 OpenL3’s model log-mel CNN CNN Baseline model of Audio-Visual 0.658 77.0
E01 A04/V04/C04’s models log-mel CNN CNN / CLIP CNN&ViT Ensemble of A04/V04/C04 0.238 95.8
E02 A04/V04/C04’s models log-mel CNN CNN / CLIP CNN&ViT E01 with Post-Processing 0.149 96.1

About post-processing, we applied the below (1) for replacing
each models’ output confidences. The idea behind this equation is
as follows: For example, in the log-loss metric, when a sample be-
longs to class ”tram” and the output confidence of the sample for
class ”tram” is a too small value (e.g. 0.00001), the log-loss value
for this sample becomes large (i.e. -log(0.00001) = 11.51) and it
will have a large negative impact on the calculation of whole log-
loss value even with a few misrecognition. Therefore, to mitigate
the whole log-loss error, we avoided the extreme confidence value
(e.g. x = 0 ∼ 0.001 and 0.99 ∼ 1.0) by clamping with the small off-
set. Also, the samples which have low or high confidence scores
(e.g. x = 0.001 ∼ 0.06, 0.06 ∼ 0.20, and 0.70 ∼ 0.99) almost
always belong to the correct class as the confidence shows, how-
ever, the complete correction of the confidence values is difficult by
only model learning processes. Therefore, to suppress the whole
log-loss error, we introduced this confidence calibration approach
to our system as post-processing. This approach is heuristic, but it
significantly improved the log-loss results on the validation dataset
and test dataset provided in DCASE2021 Task1B (Table 2 and 3).

f(x) =


0.001, when 0 < x ≤ 0.06

0.06, when 0.06 < x ≤ 0.20

x, when 0.20 < x ≤ 0.70

0.99, when 0.70 < x ≤ 1.0

(1)

3. EXPERIMENTS

In this section, we present our experimental setting and results for
both audio and video classification models.

Experimental setting for 2.1: We created audio classification
models by log-mel CNN variants under the following setting: (1)
Data augmentation: Resized to 256 × 100 × 3, Random Gain, Fre-
quency Masking [24]. We did not use Mixup [25] and Time Warp-
ing/Masking [24] for our final submissions, as these augmentations

did not work in our experimental setting. (2) Train batch size: 24
(3) Epoch: 20 (Best models’ epoch are around 3-5 epoch.)

Experimental setting for 2.2: We created video classification
models by CNN variants under the following setting: (1) Data aug-
mentation: Resized to 448 × 448 × 3, RandomAffine, ColorJitter,
GaussianBlur, Random Erasing [26]. In RandomAffine augmenta-
tion, we set degrees as [-10, 10], translate as (0.1, 0.1), and scale as
(0.5, 1.5). In GaussianBlur augmentation, we set the kernel size as
(11, 11). Other augmentations’ parameters are the default ones of
PyTorch [27]. (2) Train batch size: 20 (3) Epoch: 20 (Best models’
epoch are around 15-20 epoch.)

Experimental setting for 2.3: We created video classification
models by CLIP Late Fusion Network under the following setting:
(1) Data augmentation: We used extracted features from CLIP im-
age encoders and applied no data augmentation to these features in
the late fusion network. (2) Train batch size: 48 (3) Epoch: 20 (Best
models’ epoch are around 3-5 epoch.)

Overall setting: In the above experiments, we used SGD with
Momentum method [28] as the optimizer. The learning rate is di-
vided by 10 when the training model reached 5 epoch, 10 epoch and
15 epoch. Other hyper-parameters are the same as used in IBN-Net
[29] GitHub repository*1. We trained these models with Focal Loss
[30] which γ parameter is 2.0. About pre-trained models, we used
ImageNet pre-trained models from timm GitHub repository*2 and
CLIP pre-trained models from official CLIP GitHub repository*3.

For ensemble as noted in Table 3, we used best epoch models in
the validation accuracy of each model. Instead of using Test-Time
Augmentation, we extracted five images from each test video by
ffmpeg, and ensembled the confidences of the five images equally
for each test video. In addition, all our models are trained and tested
on 1 GPU (GeForce RTX 2080Ti).

Results: Table 2 shows the results for all of our models on

*1: https://github.com/XingangPan/IBN-Net
*2: https://github.com/rwightman/pytorch-image-models
*3: https://github.com/openai/CLIP
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Figure 2: The sample inference results for dim scenes from validation dataset. For each scene, audio modality model (A02) can correctly
classify the two dim scenes, however, image modality model (V02) failed to predict the true class. In addition, we can see that image modality
model (V02) and CLIP modality model (C04) have different characteristics even trained with same image dataset of DCASE2021 Task1B.

the validation dataset. In this task, we found that CLIP models
(C01-03) are competitive with the baseline models (B01-03) with-
out training. In addition, our video classification models are much
stronger than our audio classification models and we can classify
10-class scenes well only with our video classification models. In
Table 3, we present the submission results for test dataset. The de-
tails are as follows: S01 consists of V04 and C04. Though C04 uses
extracted features from C01-03, C04 model is constructed from one
multi-branch network. Therefore, we counted the number of mod-
els in C04 as 1. S02 is the same as E02. S01-02 are trained and
tested with official train/val split respectively. S03 consists of five
E01 models. S04 consists of five E02 models. In Table 3, the num-
ber of models for each submission is denoted as ”Models”.

Table 3: Summary of our final submissions and the logloss scores
for test dataset. p.p. in the description means post-processing which
method is explained in 2.4 section. We created five train/val label
files for creating S03-04 submissions. In the process of creating
those five label files, we splitted the whole dataset into train and
validation with keeping no overlapping about the location id.

Index Description Models Logloss (Test)
S01 only-visual, 1fold 4 0.312
S02 audio-visual, 1fold, p.p. 7 0.320
S03 audio-visual, 5folds 35 0.303
S04 audio-visual, 5folds, p.p. 35 0.257

The effect of CLIP Late Fusion Network: Table 4 shows the
effectiveness of our developed CLIP Late Fusion Network. Com-
paring the results for the case with and without CLIP, we can see
that adding CLIP models can greatly improve the recognition per-
formance of our audio-visual scene classification system, as CLIP
models are created from different approach like leveraging text
modality and large dataset. From model’s complexity perspective,
Table 5 compares the space/time complexity of CLIP Late fusion
Network with other models. CLIP models have highly discrimina-
tive features, and the extracted image features from CLIP image en-
coders can be used directly as inputs for training shallow networks.

Table 4: The effect of CLIP Late Fusion Network (C04). With
adding CLIP Late Fusion Network, the recognition performance are
boosted in both logloss and accuracy metric for validation dataset.

Description CLIP Logloss Accuracy
A04/V04 Fusion no 0.293 92.4

A04/V04/C04 Fusion yes 0.238 95.8
A04/V04 Fusion with p.p. no 0.205 93.0

A04/V04/C04 Fusion with p.p. yes 0.149 96.1

Table 5: The space/time complexity of CLIP Late Fusion Network
(C04). Epoch means the each model’s convergence epoch and Pa-
rameters means the number of learned parameters. Comparing with
other models, CLIP Late Fusion Network is lightweight and can be
quickly trained. The feature extraction time is not included in C04’s
epoch, as it can be ignored compared with training time.

Description Epoch Parameters Logloss Accuracy
V01 20 24.60M 0.328 90.0
V02 20 25.45M 0.367 91.7
V03 20 19.27M 0.336 90.9
V04 60 69.32M 0.316 92.4
C04 5 1.35M 0.273 90.9

4. CONCLUSION

In this paper, we described our approach for tackling the Task1B of
the DCASE2021 challenge. We showed that by utilizing the fea-
tures of CLIP variants with each audio classification models and
video classification models, we can improve the recognition perfor-
mance of the audio-visual scene classification task. In addition, we
applied the post-processing method to the ensembled confidences,
and our model achieved 0.149 log-loss (official baseline: 0.658 log-
loss) and 96.1% accuracy (official baseline: 77.0% accuracy) on the
officially provided fold1 validation dataset of Task1B.
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