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ABSTRACT
Over the past few years, convolutional neural networks (CNNs)
have been established as the core architecture for audio classifica-
tion and detection. In particular, a hybrid model that combines a
recurrent neural network or a self-attention mechanism with CNNs
to deal with longer-range contexts has been widely used. Re-
cently, Transformers, which are pure attention-based architectures,
have achieved excellent performance in various fields, showing that
CNNs are not essential. In this paper, we investigate the reliance
on CNNs for sound event localization and detection by introducing
the Many-to-Many Audio Spectrogram Transformer (M2M-AST),
a pure attention-based architecture. We adopt multiple classifica-
tion tokens in the Transformer architecture to easily handle various
output resolutions. We empirically show that the proposed M2M-
AST outperforms the conventional hybrid model on TAU-NIGENS
Spatial Sound Events 2021 dataset.

Index Terms— Sound event localization and detection, self-
attention, Transformer

1. INTRODUCTION

Convolutional neural networks (CNNs) have become essential for
designing deep neural networks for image understanding tasks. The
translation equivariance and locality of CNNs are known to be ef-
fective for image understanding. Due to the success of CNNs
in image understanding, CNNs have also been used in other pat-
tern recognition fields [1, 2]. Especially in audio understanding,
CNNs have been applied to spectrogram images which are extracted
from audio recordings by applying short-time Fourier transform
to recognize image patterns. However, it is necessary to under-
stand the longer context as well as the local context of the spec-
trogram in audio understanding fields. To understand this longer
context, networks combining recurrent neural networks (RNNs) or
self-attention with CNNs have been widely used [3, 4].

Self-attention mechanisms [5], especially Transformers, have
become the new standard for natural language processing (NLP).
The main approach of NLP is to fine-tune large pre-trained net-
works on small task-specific datasets. Transformers are well known
for their computing efficiency and scalability. Using these Trans-
formers, large models trained on large-scale text corpus datasets
have been released [6]. These large models are known to extract
generality from large amounts of training data. With the success
of Transformers in NLP, Transformers are starting to be utilized in
other fields [7, 8, 9, 10]. However, architectures combined with
CNN rather than pure transformer architectures are mainly used.

Recently, Vision Transformer (ViT) [7, 8] using only pure
Transformers for image understanding has been introduced. The
outstanding performance of ViT is starting to question whether

CNNs are still essential in many applications. Since then, research
on Transformers replacing CNNs has become a trend in various
fields. The Keyword Transformer (KWT) [9] and Audio Spectro-
gram Transformer (AST) [10] have been introduced as the first at-
tempts to replace CNNs with Transformers in audio understanding.
These studies demonstrate the potential of a pure Transformer to
lower the dependence on CNNs in audio understanding. Inspired
by the strength of the simple Transformer model in computer vision
and audio classification, we propose an adaptation of this architec-
ture to sound event localization and detection (SELD) [11].

In this paper, we propose a pure transformer architecture,
Many-to-Many Audio Spectrogram Transformer (M2M-AST), for
sound event localization and detection (SELD). M2M-AST enables
efficient training of large models through transfer learning from
large pre-trained models. AST provides one audio classification
output for a single channel audio input (one-to-one). M2M-AST
can have different resolution output sequences for multi-channel au-
dio inputs (many-to-many).

2. RELATED WORK

2.1. Sound Event Localization and Detection

SELD [11] is the task of classifying multiple sound events with
temporal activity into specific classes and detecting their directions.
Therefore, SELD can be separated into two small tasks: sound event
detection (SED) and direction of arrival estimation (DOAE). Specif-
ically, SED is the task of classifying sound events into specified tar-
get classes to identify their onsets and offsets when sound events oc-
cur. DOAE is the task of detecting directions in which sound events
occur in every frame. The DCASE challenge has published datasets
for SELD since 2018. The TAU-NIGENS Spatial Sound Events
2020 dataset [12] consists of data that allow up to two simultaneous
occurrences of sound events with directional activities. Addition-
ally, up to three target sound events can occur simultaneously in the
TAU-NIGENS Spatial Sound Events 2021 dataset [13]. Also, TAU-
NIGENS Spatial Sound Events 2021 dataset is more difficult than
TAU-NIGENS Spatial Sound Events 2020 dataset because there is
background noise from unknown spatial acoustic events.

In SELD, the two-stage approach [14] and the joint modeling
approach are dominant. The two-stage approach splits SELD into
two models, SED and DOAE, and trains each separately. In the joint
modeling approach, SED and DOAE are co-trained or integrated
into a single system. Both methods commonly use convolutional
recurrent neural networks (CRNNs) [4, 15, 16] or hybrid networks
[17] that combine CNNs with self-attention layers. For CNNs, the
output resolution depends on the pooling size. Therefore, SELD
models using CNNs have limited output resolution by pooling size
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and cannot freely construct output resolution depending on the ap-
plication.

2.2. Self-Attention and Transformers

As pure self-attention-based networks, Transformers became the
standard for NLP. Then, with the advent of ViT [7], the pure Trans-
former model expanded to the field of image understanding. ViT
outperforms CNNs in image classification with self-attention com-
putations between different image patches. However, ViT requires
a significant amount of training data. To improve this, DeiT [8],
which uses data augmentations and a knowledge distillation token
to improve data efficiency, has been proposed. With the success of
understanding images without CNNs, other research fields are also
studying the reliance on CNNs.

KWT [9] and AST [10] are the first studies using a pure trans-
former in the field of audio understanding. These studies show that
the pure Transformer models can replace CNNs in audio classifica-
tion. In particular, KWT is a model that has adjusted the structure
of the DeiT model for audio classification. AST is a model for ef-
ficiently training large-scale Transformer networks using ImageNet
pre-trained models. The above studies are about a one-to-one struc-
ture that performs one classification on one audio recording. We
propose an M2M-AST architecture that outputs sequences of vary-
ing resolutions from multi-channel audio recordings.

3. MANY-TO-MANY AUDIO SPECTROGRAM
TRANSFORMER

3.1. Features

We use logmel and intensity vectors as input features [13] for
SELD. The proposed SELD system is based on two-stage approach.
The proposed SED network and DOAE network take different in-
put features. The SED network uses logmel energy extracted from
the microphone array data segmented into a single channel as input
features. The DOAE network uses 7-channel inputs by extracting
logmel and intensity vectors from Ambisonic data. This is summa-
rized in Table 1. Table 2 shows the pre-processing parameters to
extract input features

Format Feature # Channels (C) Label
SED Microphone array Logmel 1 Multi label binarization
DOAE Ambisonic Logmel, intensity vector 7 Cartesian coordinate (xyz)

Table 1: Feature and label configuration for SED and DOAE

Pre-processing
Time window length 20 ms
Time window stride 10 ms
Frame length (T) 300 (3 sec)
# Mel-bins (M) 128

Table 2: Pre-processing parameters

3.2. Model Architecture

As shown in Figure 1, the proposed M2M-AST uses a Transformer
encoder in the same way as AST [10]. M2M-AST uses only the
encoder layer of the Transformer for classification and regression.

Compared to AST, M2M-AST has differences in input feature and
classification token configuration. Neural Networks for SELD ex-
tract multi-channel feature images from 4-channel audio recordings
and use them as input features. Therefore, M2M-AST uses multi-
channel feature images extracted from 4-channel audio recordings.
Then we segment the extracted multi-channel feature images into
the 16x16 patch sequence. At this point, we split the feature images
by applying the same stride to the time and frequency dimensions.
Afterwards, patch tokens are extracted through a linear projection
for each patch. Like ViT [7, 8], the learnable classification token
for classification is appended at the beginning of the patch token se-
quence. However, since SELD performs SED and DOAE every 100
ms, M2M-AST should output a series of outputs rather than a single
output like AST. Therefore, patch embedding consists of appending
a classification token sequence of equal length to the length of the
output sequence at the beginning of the patch token sequence. The
length of the classification token sequence determines the output
resolution. For example, configuring an output resolution of 100
ms for 3 seconds input data would use a sequence of 30 classifi-
cation tokens. On the other hand, configuring an output resolution
of 20 ms for 3 seconds of input data would use a sequence of 150
classification tokens. The Transformer has no convolution or recur-
rence, so it cannot leverage the relative spatial information of the
patch tokens in the 2D feature images. To take advantage of the po-
sition information of the patch tokens, we add a learnable positional
embedding pi(∈ Rd) to the patch embedding. The Transformer en-
coder’s outputs of the classification token sequence learn the audio
spectrogram representation by computing the self-attention between
each patch token. Then, we use a dense layer with an activation
layer for SED and DOAE from the Transformer encoder’s output of
classification tokens. M2M-AST’s model parameters are the same
as AST and are summarized in Table 3.

Model parameter
Patch shape (h x w) 16x16
Patch overlap 6
# Patches (n) 348
Patch dimension (d) 768
# Encoder layer (L) 12
# Attention head 12
Output size (t') 20
Dropout 0.1

Table 3: Model parameters

3.3. Transfer Learning

M2M-AST uses only a Transformer encoder like AST [10]. M2M-
AST uses the same Transformer encoders as ViT [7, 8]. ViT re-
quires a large dataset for sufficient performance. To overcome
this problem, DeiT [8] uses knowledge distillation. Unlike image
datasets, audio datasets contain relatively small amounts of data.
Therefore, AST uses transfer learning to distill knowledge from the
ImageNet pre-trained model. M2M-AST uses transfer learning in
the same way as AST. The weight can be easily transferred because
the same Transformer encoder is used. However, the layer learning
patch embeddings vary in size and require some adjustments.

DeiT uses 3-channel input images, while M2M-AST uses vari-
able multi-channel input images. In M2M-AST, the weight cor-
responding to each channel in the linear projection layer uses the
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(a) AST (b) Many-to-Many AST

Figure 1: Architecture of AST and Many-to-Many AST; B: batch size, T: time, M: # mel-bins, C: channel, t': output size, (h x w): patch
shape, n: # patchs, d: patch dimension, Cl: # class

average weight of the three channels in DeiT. While DeiT has
a fixed length of patch embedding sequence, M2M-AST has not
fixed length of patch embedding sequence because the classifica-
tion token sequence that determines the output resolution is vari-
able. Therefore, the positional embeddings for the patch tokens in
M2M-AST [p1, · · · , pn] are transferred as scaled values through
cut and bilinear interpolation to map the relative positions of the
positional embeddings in DeiT to the input feature. Individual posi-
tional embeddings of classification token sequence [p1−t′ , · · · , p0]
are equally initialized by the average value of classification token
and distillation token in DeiT. This transfer learning method makes
it easy to extract pre-trained network knowledge for ImageNet into
the audio domain.

3.4. Post-processing

The input time window for our system is 3 seconds. We slide this
window with a small hop size to create many overlapped results and
average these results during the inference [15]. Additionally, we
apply median filtering and tuning the threshold for each class during
SED inference. Finally, we apply a 16-way rotation augmentation
to infer the test data and average the values obtained by rotating the
results in reverse [15, 16].

4. EXPERIMENTS

We provide experimental results on TAU-NIGENS Spatial Sound
Events 2021 development dataset [13]. The development dataset
consists of 600 1-minute wave files. We use 400 minutes of data for
training, 100 minutes for validation, and the remaining 100 minutes
for testing. Our system is trained using the hyper-parameters in Ta-
ble 4. We use transfer learning with the pre-trained model. The pre-
trained model used in our system is shown in Table 5. We fine-tune
the SED model with 85M parameters and the DOAE model with
86M parameters for 50 epochs independently. We use the Adam
optimizer. For the development dataset, the training time consumed

by the M2M-AST is 4 hours for SED and 2 hours for DOAE at
4-TITAN Xp. The model mentioned in Table 5 is used for the ex-
periment. The models mentioned in Table 5 are for each SED and
DOAE task. Because of the large model size of M2M-AST, we use
a two-stage approach rather than joint training for SELD.

Training
Epoch 50
# Batch (B) 24
Learning rate 0.0001
Optimizer Adam

Table 4: Hyper-parameters for proposed system

Task Pre-trained model Loss
M2M-AST1 SED DeiT BCE
M2M-AST2 SED M2M-AST1 soft f-loss [18, 19]
M2M-AST3 DOAE DeiT MSE
M2M-AST4 DOAE M2M-AST3 masked MSE

Table 5: Model configuration

4.1. Results

Table 6 reports the results on the TAU-NIGENS Spatial Sound
Events 2021 dataset [13]. All results are based on logmel energy
and intensity vectors as input features. Baseline-Large is a model
in which the filter size of the baseline is increased to be similar to
the model size of M2M-AST. Using M2M-AST with the two-stage
approach significantly improves the performance of all metrics over
the baseline. In addition, the proposed pure Transformer model,
M2M-AST, outperforms the CRNN-based models listed in Table 6,
demonstrating that it is a sufficient replacement for CRNNs. There-
fore, we show that self-attention computing within the Transformer
on SELD, SED, and DOAE can reduce the reliance on CNNs.
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# Params ER20◦ F20◦ LECD LRCD

CRNN (Baseline FOA) 0.5M 0.69 33.9 % 24.1◦ 43.9 %
CRNN (Baseline-Large) 184M 0.65 45.6 % 22.6◦ 55.0 %
CRNN [20] 14M 0.65 48.3 % 22.0◦ 62.6 %
M2M-AST1&3 172M 0.55 62.6 % 17.5◦ 74.0 %
M2M-AST1&4 172M 0.52 64.4 % 16.0◦ 74.0 %
M2M-AST2&3 172M 0.52 64.0 % 17.7◦ 74.7 %
M2M-AST2&4 172M 0.50 65.7 % 16.3◦ 74.7 %

Table 6: Experimental results for development dataset

4.2. Ablation Study

We perform a series of ablation studies to explain M2M-AST design
choices. We conduct ablation studies based on M2M-AST1 and
M2M-AST3 initialized with ImageNet pre-training models while
using loss functions commonly used in SELD.

4.2.1. Batch size and frame length

We compare the performance of M2M-AST with different batch
sizes and frame lengths of input features through grid search. Ta-
ble 7 shows the results of this comparison. Performance for SED
under the ideal DOAE condition is evaluated through the F1 score
and LRCD(F∞ score). F1 score represents the balanced score of
precision and recall. Besides LRCD represents the recall dominant
score. On the other hand, longer input frames improve both preci-
sion and calls. This is because longer input frames make M2M-AST
use more patches for training. For DOAE, smaller batch sizes and
longer input frame lengths improve performance.

SED (F1, LRCD) DOAE (LECD)
# Batch 1 sec 2 sec 3 sec (Used) 1 sec 2 sec 3 sec (Used)

24 (Used) (68.3, 66.3) (75.0, 73.2) (74.0, 74.0) 26.3◦ 22.2◦ 21.8◦
48 (69.5, 70.9) (75.7, 72.1) (75.2, 73.6) 27.9◦ 23.1◦ 23.0◦

96 (70.7, 70.3) (75.8, 68.7) - 27.0◦ 24.4◦ -

Table 7: Experimental results with different batch sizes and input
frame lengths

4.2.2. Patch split with overlap

Table 8 shows a performance comparison with patch splits of 16x16
sizes using various sizes of strides. Configuring dense patch seg-
mentation with large overlap helps both SED and DOAE improve
performance. However, for SED, performance improvements con-
verge on overlap size 6. Thus, exploiting patch splits with a larger
overlap size than 6 leads to the burden of memory and computation
cost.

# Patches SED (F1, LRCD) DOAE (LECD)
No Overlap 144 (71.6, 60.2) 27.3◦

Overap-2 189 (73.8, 68.6) 24.6◦

Overap-4 240 (74.1, 70.6) 24.1◦

Overap-6 (Used) 348 (74.0, 74.0) 21.8◦
Overap-8 540 (74.9, 72.5) 21.0◦

Table 8: Experimental results with different lengths of patch overlap

4.2.3. Output resolution

M2M-AST can adjust the number of classification tokens to have a
variety of output resolutions. Table 9 shows a performance compar-

ison of M2M-AST with output resolution from 100 ms to 25 ms.
Since the resolution of the ground truth data is 100 ms, we use the
nearest-neighbor interpolation to construct labels with high resolu-
tion and use them for training. Then we apply a median filter to
construct an output of 100 ms. For SED, smaller resolution results
in slight performance gains due to median filtering. On the other
hand, for DOAE, the results do not vary significantly with changes
in output resolution.

Output resolution Output size (t') SED (F1, LRCD) DOAE (LECD)
25 ms 120 (75.3, 73.8) 22.2◦

33.3 ms 90 (76.5, 75.1) 22.1◦

50 ms 60 (74.4, 72.8) 22.7◦

100 ms (Used) 30 (74.0, 74.0) 21.8◦

Table 9: Experimental results with different output resolutions

4.2.4. Pre-training and loss function

We compare the performance of randomly initialized M2M-AST
and M2M-AST transferred from pre-trained models. As shown in
Table 10, the weight transferred model from ImageNet pre-trained
model outperforms the randomly initialized model in SED. On the
other hand, transfer learning from ImageNet pre-trained model im-
proves DOAE performance slightly. In addition, we compare M2M-
AST using different loss functions while using a pre-trained model.
In SED, soft f-loss [18, 19] is slightly better than binary cross-
entropy (BCE), but there is no significant difference. On the other
hand, with the DOAE pre-trained model, masked MSE improves
performance by 2.7 degrees over BCE.

Pre-trained model Loss SED (F1, LRCD) DOAE (LECD)
No pre-train (SED) - BCE (60.4, 54.5) -
ImageNet pre-train (M2M-AST1) DeiT BCE (74.0, 74.0) -
SELD pre-train (M2M-AST2) M2M-AST1 soft f-loss (75.8, 74.7) -
No pre-train (DOAE) - MSE - 22.5
ImageNet pre-train (M2M-AST3) DeiT MSE - 21.8
SELD pre-train (M2M-AST4) M2M-AST3 masked MSE - 19.1

Table 10: Experimental results with different loss functions and pre-
trained models

5. CONCLUSIONS

In this paper, we describe how to apply the standard Transformer
architecture to SELD. As a consequence, we introduce M2M-AST,
a pure Transformer model for SELD. Existing SELD networks
have commonly used hybrid architectures that combine CNNs with
RNNs or self-attention layers. We empirically show that M2M-AST
can replace these hybrid networks in SELD, SED, and DOAE. The
experimental results represent the potential of a pure Transformer to
lower the reliance on CNNs in SELD. Traditional neural networks
use pooling layers to change the output shape. However, due to the
pooling size of this pooling layer, the output resolution cannot be
configured freely. On the other hand, M2M-AST has the advantage
of being able to easily design to have a variety of output resolutions.
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