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ABSTRACT

micarraylib is a python library to load, standardize, and aggre-
gate datasets collected with different microphone array hardware.
The goal is to create larger datasets by aggregating existing and
mostly incompatible microphone array data and encoding it into
standard B-format ambisonics. These larger datasets can be used
to develop novel sound event localization and detection (SELD) al-
gorithms. micarraylib streamlines the download, load, resam-
pling, aggregation, and signal processing of datasets collected with
commonly-used and custom microphone array hardware. We pro-
vide an API to standardize the 3D coordinates of each microphone
array capsule, visualize the placement of microphone arrays in spe-
cific spatial configurations, and encode time-series data collected
with different microphone arrays into B-format ambisonics. Finally,
we also show that the data aggregates can be used to reconstruct a
microphone capsule’s time-series data using the information from
other capsules in the data aggregate. micarraylib will allow for
the easy addition of more datasets and microphone array hardware
as they become available in the future. All original software written
for this paper is released with an open-source license.

Index Terms— sound event detection and localization, micro-
phone arrays, spherical harmonics, ambisonics encoder, multichan-
nel signal processing

1. INTRODUCTION

In the past few years, the field of machine listening has seen ma-
jor advances in sound event detection (SED) algorithms [1, 2, 3].
These advances have been made possible by the introduction of
large datasets with annotated sound events. In particular, the mil-
lions of annotated soundclips in AudioSet [4], totaling around 100
hours of data, have been critical for these developments.

In contrast, the development of sound event localization and de-
tection (SELD) algorithms has been slower. This is not surprising,
given that SELD datasets are much smaller than AudioSet, usually
with only a few thousand sound events with annotations for both
category and spatial localization (example datasets include those
introduced by the DCASE SELD challenges in 2019 [5], 2020 [6],
and 2021 [7], as well as the LOCATA challenge [8]).

To develop SELD algorithms that are as robust as existing
SED ones, machine listening researchers will need access to large
amounts of data collected with microphone arrays. A number of
publicly available microphone array datasets exist (see Table 1), but
these datasets have heterogeneous hardware parameters, thus com-
plicating their aggregation.

∗roman@nyu.edu

Table 1: Some publicly available microphone array datasets. The
number of microphone arrays, total microphone capsules, length in
hours, and presence of SELD annotations are tabulated.

dataset no. arr capsules length SELD
DCASE(3) 2019 [5] 1 4 8 Hr Yes
DCASE(3) 2020 [6] 1 4 13 Hr Yes
DCASE(3) 2021 [7] 1 4 13 Hr Yes
LOCATA [8] 4 63 0.5 Hr Yes
3D-MARCo [9] 7 71 0.2 Hr No
EigenScape [10] 1 32 11 Hr No

Two notorious differences between microphone array datasets
include 1) the use of different microphone hardware and 2) conven-
tions for SELD annotation (or complete lack of), including event
start time, duration, and position in space. To standardize micro-
phone array recordings across different hardware, some researchers
encode them into the ambisonics B-format [11, 12], which uses the
individual microphone capsule coordinates to compute a matrix of
spherical harmonic coefficients. In its simplest form, the B-format
is obtained by multiplying the pseudo-inverse of this matrix by the
corresponding raw capsule recordings (also known as A-format)
[13]. The ambisonics B-format captures specific spatial features
(i.e. the first channel is equivalent to an omnidiectional microphone,
the next three channels are fig-8 microphones aligned on the x, y,
and z Cartesian coordinates, etc. see [14] for details on the spher-
ical harmonics theory that results in B-format encoding). On the
other hand, standardizing SELD annotations is possible if certain
parameters (i.e. event start time, end time, and a position in space)
are parsed to be consistent across datasets. Additionally, since not
all microphone array datasets have SELD annotations, the use of
unsupervised and self-supervised learning strategies to learn spatial
representations will be necessary to use all available datasets.

Here we introduce micarraylib, a python library to down-
load, standardize, and aggregate existing microphone array record-
ings. Using micarraylib, one can encode raw microphone ar-
ray recordings across different datasets to be in the common am-
bisonics B-format. micarraylib also standardizes annotations
to be in a common convention. Additionally, micarraylib orga-
nizes metadata (i.e. microphone capsule coordinates and hardware
name) to be readily accessible. micarraylib is freely available
at https://github.com/micarraylib/micarraylib.

In the next sections we describe micarraylib’s functional
principles and show example applications, which include the aggre-
gation of different SELD datasets, visualization of aggregated mi-
crophone coordinates, and data augmentation via interpolation of a
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virtual capsule recording using data from neighboring capsules.

2. LIBRARY FUNCTION

We standardize three elements present in most microphone array
datasets: 1) metadata, 2) SELD labels (if any), and 3) audio format.

2.1. Metadata processing

The most important piece of metadata accompanying any micro-
phone array dataset is its microphone capsule coordinates. Micro-
phone array datasets often use different microphone hardware. De-
signers publish the relative distance between microphone capsules
and a reference point. These can be converted to 3D coordinates
(Cartesian or polar). In some datasets the reference point is the mi-
crophone array’s center, or a specific location in a physical space.
micarraylib standardizes these distances and locations to be a
common coordinate format (3D vectors, either Cartesian or polar).
These coordinates can be used to visualize microphone arrays, to
compute spherical harmonics, and more generally to develop al-
gorithms that incorporate spatial information at the level of micro-
phone capsule location.

Other pieces of metadata that micarraylib processes (if
available) and makes available to the user include sound scene cat-
egory, musical artist, and geographic location of the recording.

2.2. SELD label standardization

Because of their unique ability to capture spatial information, mi-
crophone arrays are a common hardware choice to collect SELD
data. While several labeling conventions exist among datasets, an-
notations for sound events include at least a start time, but may also
have an end time, and a position in space. micarraylib stan-
dardizes sound event labels across datasets to have the following
format: start and end time (python tuple), object category (a unique
integer or string), location coordinates (3D vector that may change
over a fixed time-step if the event moves), and active time-steps (list
of booleans if the event is transiently on or off). When one of these
parameters does not exist for an event, micarraylib will indi-
cate it with a None. By using micarraylib, researchers will
access microphone array datasets with a standard format for spatial
sound event labels.

2.3. Audio standardization

The ambisonics B-format allows for the standardization of micro-
phone array recordings [11, 12]. A simple ambisonics encoder uses
the individual microphone capsule coordinates to compute a ma-
trix of spherical harmonics. The pseudo-inverse of this matrix then
multiplies the raw capsule recordings to encode them into B-format
channels.

While more complicated encoders are usually proprietary and
include multiple effects that aid perceptual parameters [15], com-
puting the spherical harmonics using microphone array coordinates
is a straightforward operation if the microphone capsule coordinates
are known. The N th-order spherical harmonic matrix can be com-
puted using equation 1.

Yn,l(θ, φ) = Xn,|l|Pn,|l| cos(θ)


√
2 sin(|l|φ) if l < 0

1 if l = 0√
2 cos(lφ) if l > 0

(1)

This is the conventional equation used in the field of acous-
tics to compute the Laplace spherical harmonics [16]. n indexes
the spherical harmonic order (i.e. 0th, 1st, 2nd, . . . , N th) and m
indexes the degree (i.e. each order n has degrees m ∈ [−n, n]
degrees). θ ∈ [0, π] is the vertical angle advancing from top to bot-
tom, φ ∈ [0, 2π] is the azimuth angle starting at the front of the
microphone array and advancing counter-clockwise. Xn,|m| is a
normalization factor that ensures that spherical harmonics have unit
magnitude [16] and Pn,|m| is the Legendre function (without the
Condon-Shortley phase) [17].

micarraylib converts raw capsule recordings into the com-
mon ambisonics B-format. This results in audio signals that have
shared spatial characteristics across channels, independent of which
microphone hardware was used to collect them.

3. LIBRARY ORGANIZATION AND COPYRIGHT

micarraylib is written in python and all its contents are open-
source. The following subsections describe the organization of its
file structure as seen from its root directory.

3.1. Micarrays

Directory that contains the array shapes raw.py and
array directions raw.py files, which list the raw (as
released by the manufacturer) shape (i.e. coordinates) and capsule
directionality of each microphone array supported. The names
that the manufacturer gave to each capsule in the microphone
array are also included in these files. The micarray.py file
in this directory defines a micarray object with attributes that
summarize all the information provided by the manufacturer.

This directory also has files with functions that pro-
cess the data from the array shapes raw.py and
array directions raw.py files and standardize it to be
in 3D Cartesian and/or polar coordinates.

3.2. Util

Directory that contains a utils.py file with basic functionalities
for dataset standardization, such as functions to convert between
polar and Cartesian coordinates, normalize units of length to meters
and radians, and normalize time units to seconds (in SELD labels,
for example). It also contains a plotting.py file with functions
that tailor matplotlib’s plotting for microphone arrays.

3.3. Encoder

File defining the encoder object with its main attribute being a
set of capsule coordinates (used to calculate the matrix of spherical
harmonics). It also has an encode method that takes a numpy
array with raw recordings and returns a simple encoding of these
recordings in ambisonics B-format.

3.4. Dataset

File that defines the dataset object using the soundata API
[18]. soundata is a new python library with tools to download
and load common audio datasets with corresponding annotations
and metadata. In addition to soundata attributes, the dataset
object includes a list of microphone capsule coordinates used. The
soundata API includes all methods to download and load the

176



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

original data. micarraylib standardizes the SELD annotations
when they are not standardized by soundata.

3.5. Aggregator

File that defines the aggregate datasets object, whose at-
tributes include a list of dataset objects. Its default method stan-
dardizes all recordings across datasets to be the same number of
channels in ambisonics B-format, and pairs individual recordings
with their corresponding SELD labels.

It also defines the micarray aggregate object, which ag-
gregates coordinates and recordings across microphone arrays (use-
ful when multiple pieces of microphone array hardware are used
together in a single dataset, such as the 3D-MARCo or LOCATA
datasets).

3.6. Augmentation

File that defines a data augmentation object, which uses a
neural network model to virtually add capsule recording data to a
microphone array dataset at a coordinate defined by the user. Sec-
tion 5 below describes the current functionality of this model (which
is limited to reconstruction of channels within the EigenMike [19]
hardware at the time of this writing, but we are working to expand
its possibilities).

3.7. Copyright

micarraylib is released with a Creative Commons License. We
also do not alter any dataset’s license, as micarraylib only
accesses data already hosted online (via soundata; as a result,
datasets are not redistributed by micarraylib).

4. AGGREGATING DATASETS

micarraylib streamlines the aggregation of existing micro-
phone array datasets. Figure 1 shows the code needed to standardize
and aggregate the six different datasets in Table 1.

One at a time, micarraylib separately encodes each record-
ing into a first-order ambisonics B-format (4 channels total; the
first-order ambisonics limit is determined by the dataset with the
lowest number of raw capsule recordings: 4 channels in the
DCASE SELD datasets). After the simple encoding step, we have
a total of 46 hours of audio data in a common ambisonics B-
format. micarraylib also standardizes the SELD labels from
the DCASE SELD and LOCATA datasets to have a start and end
time, object category, spatial coordinates, and active time-steps.
The 3D-MARCo and EigenScape datasets do not have SELD la-
bels, and the resulting aggregate indicates this with None entries in
the label attribute for those specific recordings. In the end, 34 hour
of data in this dataset aggregate have labeled sound events.

4.1. Hardware considerations and next steps

Aggregating different datasets can result in SELD methods that con-
found elements that are different between datasets (i.e. hardware,
events, and/or ambient). While our library encodes all datasets into
the standard ambisonics B-format, it is important to keep in mind
that the hardware differences between datasets could remain in the
B-format. For this reason, we plan to continue fine-tuning our en-
coder to quantify and reduce differences between hardware. To
better quantify these effects, datasets with scenes and events that

1 import micarraylib as mc
2

3 datadir = ’˜/datasets’
4

5 datasets = [
6 mc.datasets.dcase19(datadir),
7 mc.datasets.dcase20(datadir),
8 mc.datasets.dcase21(datadir),
9 mc.datasets.locata(datadir),

10 mc.datasets.marco(datadir),
11 mc.datasets.eigenscape(datadir)
12 ]
13

14 for dataset in datasets:
15 dataset.load() # using the soundata API [18]
16

17 aggregate = mc.aggregators.aggregate_datasets(
18 datasets,
19 sr=24000,
20 )

Figure 1: Downloading, loading, and aggregating the six datasets in
Table 1 using micarraylib.
.

are simultaneously collected with different hardware (i.e. the 3D-
MARCo and LOCATA datasets) will be particularly useful.

5. DATA AUGMENTATION

An idealized spatial recording of a sound scene would record infor-
mation at all locations in the space continuum. Since such idealized
scenario is not possible with existing hardware, researchers must
sample specific locations using microphone arrays with capsules at
specific coordinates. micarraylib includes a model can be used
to virtually add microphones to a dataset via interpolation from ex-
isting microphone capsule data.

5.1. Technical motivation

Aggregating microphone arrays can lead to denser spatial sampling
of a sound scene. The resulting dense samplings of a sound scene
are redundant [20]. Therefore, given a set of microphone capsules
recording a common scene or source, it should be possible to inter-
polate, with some error, one of the capsule’s time-series using the
recordings collected with all other capsules. If this is possible, it
should also be possible to virtually generate the recording of a mi-
crophone capsule outside but near the microphone array topology.

While a detailed empirical study of virtual microphone cap-
sule time-series generation deserves a separate scientific report,
micarraylib already includes some of this functionality. Here
we describe a series of experiments that we carried out to design a
model able to virtually add the recording of a missing microphone
capsule using the recordings from other capsules in the Eigen-
Mike microphone array. These experiments also show the utility
of micarraylib to aggregate datasets that can then be used for
machine listening research.

In all experiments we ask the question: can the recording of
a microphone capsule be reconstructed given the preceding 5 mil-
liseconds of recordings with neighboring capsules? We hypothesize
that such reconstruction is possible using both the recordings from
neighboring capsules and their 3D spatial coordinates.
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Table 2: Model performance for capsule interpolation experiments

Model MSE (eval)
before training 0.9
exp 1 0.000039
exp 2 0.00013
exp 3 0.0016

5.2. Data

We used micarraylib to aggregate the EigenMike data from the
EigenScape, 3D-MARCo, and LOCATA datasets. We skip the en-
coding step and keep the recordings in the raw format (A-format).
We split each recording into development (the first 80% frames) and
testing (the last 10% frames) subsets (the frames between the %80
and 90% of each recording length were left out to minimize the ef-
fects of temporal correlation between the development and testing
data).

5.3. Methodology

The input features to train our model are an intermediate step be-
tween A-format and B-format that is computed as follows. We cal-
culate the fourth order spherical harmonic matrix using the 3D co-
ordinates for each EigenMike capsule and equation (1). The result
is a matrixW that has (N+1)2 rows (N = 4) and 32 columns, one
corresponding to each EigenMike capsule. We multiply the sample
recorded by a given capsule with the spherical harmonic coefficients
in the corresponding column of matrixW . We stack 20 of these ma-
trices into a tensor that corresponds to 5 consecutive milliseconds
of samples in a recording. We refer to these concatenated matrices
as tensor X .

In the experiments described below we remove some audio in-
formation from tensor X and we train a simple LeNet CNN [21] to
use X to reconstruct the recording of a single capsule (whose audio
information is missing from X) with a MSE loss function.

5.4. Experiments and results

We carried out three experiments: 1) Tensor X is only missing the
audio information of the single capsule that we want to reconstruct.
2) The samples of five neighboring capsules are also removed from
X . 3) X only has the audio information of the three capsules that
would result in a tetrahedral geometry (4 capsules total) with respect
to the capsule whose recording we want to reconstruct.

We trained a LeNet CNN model from scratch using the ADAM
optimizer with a patience criterion of 1000 epochs. For each of
these three experiments, the model’s task was to reconstruct the
missing samples of a single microphone capsule in the EigenMike
using X as input. The average MSE across datapoints in the evalu-
ation set was computed after training and is shown in Table 2.

As shown in Table 2, the evaluation MSE before training was
close to 1. Experiment 1 reduced this MSE by 5 orders of magni-
tude, showing that a single capsule’s samples can be reconstructed
(with some error) using all other 31 capsule recordings in the Eigen-
Mike. Experiment 2 also reduced the MSE but only by 4 orders
of magnitude, showing that reconstruction of the same capsule’s
recording is affected by the fact that audio information from neigh-
boring capsules was missing. Experiment 3 only reduced the MSE
by 3 orders of magnitude due to there only being information from

Figure 2: Interactive visualization with micarraylib of the
location and directionality of microphone arrays used to collect
the LOCATA dataset, one of which is the EigenMike. Using
matplotlib’s 3D plotting, micarraylib includes methods to
plot capsules in microphone array hardware.

3 other microphone capsules to reconstruct the capsule’s recording.
These results show that reconstructing a capsule’s samples using
other capsule’s recordings is possible, but the interpolation is sen-
sitive to the density and proximity of recordings available to carry
out this reconstruction.

5.5. Next steps

Given that reconstructing a microphone’s signal seems possible
within EigenMike capsules, we will train a model able to use Eigen-
Mike data to recover the signal captured by a capsule or array out-
side the EigenMike geometry. For this purpose, we will use the
microphone array aggregates from the 3D-MARCo and LOCATA
datasets, which include data recorded by microphone capsules out-
side the EigenMike structure but very near to it (see Fig 2). Our goal
is for micarraylib to ultimately allow for the virtual simulation
of microphone capsules in arbitrary coordinates.

The idea of virtual microphone capsule generation has al-
ready been explored with supervised learning using neural net-
work techniques like CNNs [22, 23] or autoencoders [24],
via statistical interpolation with β-divergence [25] or with
pure signal processing [26]. The full potential of the mi-
crophone array data augmentation that we propose will be
achieved by using micarraylib in combination with audio
augmentation libraries like MUDA [27] and Audiomentations
(https://github.com/iver56/audiomentations).

6. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented micarraylib, a library to aggregate micro-
phone array datasets by standardizing microphone array coordi-
nates, SELD labels, and recordings using a simple ambisonics B-
format encoder. Our presentation of the library also included prac-
tical demonstrations that show both the utility of micarraylib
and the need for it in the field of machine listening. Researchers
will be able to use micarraylib to create large aggregates of
standardized microphone array datasets.
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We are also looking forward to seeing what other functionali-
ties the machine listening research community believes should be
added to micarraylib. We will continue adding new datasets
to micarraylib in years to come, and we will also add sup-
port for more complex signal processing procedures that include
completely custom array shapes, microphone polarity, methods for
perceptually-plausible ambisonics encoding and decoding, as well
as processing of motion-capture data for moving sound events and
microphone arrays.
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