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ABSTRACT

Automated audio captioning (AAC) is the task of automatically
generating textual descriptions for general audio signals. A cap-
tioning system has to identify various information from the input
signal and express it with natural language. Existing works mainly
focus on investigating new methods and try to improve their per-
formance measured on existing datasets. Having attracted attention
only recently, very few works on AAC study the performance of ex-
isting pre-trained audio and natural language processing resources.
In this paper, we evaluate the performance of off-the-shelf mod-
els with a Transformer-based captioning approach. We utilize the
freely available Clotho dataset to compare four different pre-trained
machine listening models, four word embedding models, and their
combinations in many different settings. Our evaluation suggests
that YAMNet combined with BERT embeddings produces the best
captions. Moreover, in general, fine-tuning pre-trained word em-
beddings can lead to better performance. Finally, we show that se-
quences of audio embeddings can be processed using a Transformer
encoder to produce higher-quality captions.

Index Terms— audio captioning, transfer learning, word em-
beddings, machine listening, transformer

1. INTRODUCTION

Automated audio captioning (AAC) is an inter-modal translation
task, where existing methods take an audio signal as input and gen-
erate a textual description, i.e. a caption, of its contents [1]. The
generated captions contain information about various aspects of the
content of the audio signal, ranging from identification of sound
events to knowledge about spatiotemporal interactions, foreground
and background disambiguation, surroundings, textures, and other
high-level information [2–4].

To our knowledge, all published works focusing on AAC solely
employ deep learning methods [1–3, 5–17]. Most of them follow
an encoder-decoder scheme and address the task as a sequence-to-
sequence (seq2seq) learning problem [18]. Convolutional neural
network (CNN)-based encoders are often utilized, for example, in
[2, 3, 7, 8, 12, 17], and recurrent neural network (RNN)-based de-
coders can be used in order to generate the captions [1–3, 7, 9, 11–
17]. Recently, more and more methods have involved an atten-
tion mechanism. For example, as a technique to enable the de-
coder to focus only on certain parts of the latent representation

extracted by the encoder [1, 2, 17]. Or more generally, other ap-
proaches [6, 8, 10, 19, 20] employ a Transformer model [21]. This
type of model seems particularly adequate for AAC since it led to
groundbreaking results in multiple fields, such as natural language
processing (NLP), computer vision, and audio processing [22].

Transfer learning is a popular technique often employed in NLP
and machine listening (MaL) tasks. However, existing approaches
in AAC often do not take advantage of any pre-trained resources
and instead train their models from scratch. Only recently, a few
published papers [2,3,5,6] propose to incorporate pre-trained audio
models such as VGGish [23] or to rely on word embedding models
such as word2vec [24]. Given the large number of available pre-
trained models in MaL and NLP, it is still unclear which models are
most suited for AAC. Moreover, incorporating these models into a
Transformer-based AAC system can involve some specific design
choices that are also yet overlooked.

In this paper, we focus on investigating the use of pre-trained
models taken from MaL and NLP in the context of AAC. In par-
ticular, we are interested in identifying which available resources
are the most valuable and how to combine them efficiently in a
Transformer-based AAC system. We use various off-the-shelf pre-
trained audio and word encoding methods. Our contributions are:

• We adapt a Transformer-based AAC method that can use dif-
ferent pre-trained MaL and NLP models,

• We conduct a thorough investigation of the performance of our
method by combining pre-trained models in various settings,

• We identify what combinations of techniques make pre-trained
resources specifically beneficial for an AAC system. We con-
sider fine-tuning word embeddings, using an adapter to process
audio embeddings, and the usage of overlap when extracting
audio embeddings.

The rest of the paper is structured as follows: In Section 2 we
present our method and in Section 3 we outline the evaluation pro-
cess. The results are presented and discussed in Section 4. Finally,
Section 5 concludes the paper.

2. METHOD

In our study, we adopt a Transformer-based model architecture
which has been shown to produce state-of-the-art results for
AAC [10, 19, 20]. An overview of our method is presented in
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Figure 1. It consists of an audio encoder, E(·), an embeddings’
adapter, A(·), and a decoder D(·). As E, we employ different pre-
trained models for general audio processing. For A, we compare the
use of no adapter, a multi-layer perceptron (MLP), and a multi-head
attention (MHA) component. The output of A is used together with
word embeddings of the previously predicted words as an input to
D, a Transformer-based decoder1.

A sequence of audio features X ∈ RT×F with T vectors of F
features is used as an input to the method, which outputs a sequence
of one-hot encoded tokens S ∈ [0, 1]K×W , where K corresponds
to the number of tokens in the generated caption and W to the size
of the considered vocabulary. More specifically, X is used as an
input to E as

Z = E(X), (1)

where Z ∈ RT ′×F ′
is a sequence of T ′ intermediate representa-

tions with F ′ features provided by the pre-trained model (i.e. an
audio embedding sequence). Then, the adapter A will process Z as

Z′ = A(Z), (2)

where Z′ ∈ RT ′×F ′′
and F ′′ is the dimensionality of the features

that A outputs. Finally, the decoder D will predict the probability
distribution of appearance over theW words at the k-th step, Sk, as

Sk = D(Z′,S′0, . . . ,S
′
k−1), (3)

where S′i is a learned word embedding for step i, and S′0 = {0}W
′
.

As S′, we make use of different pre-trained NLP models.
We employ different audio embedding models that are opti-

mized for a task different from AAC. The extracted audio embed-
dings might contain information that is specific to the corresponding
source task and not necessarily optimal for AAC. We do not fine-
tune the models in our experiment, but instead, we study the usage
of different adapters A that process the audio embeddings Z.

The Transformer decoder D consists of N blocks, each of them
having two serially cascaded MHA layers that perform self and
cross-modal (i.e. between audio and words) attention, respectively.
The output of the second, cross-modal attention, is given as an in-
put to a linear layer and a layer normalization process. The word
embeddings S′ are used as an input to D. Following the original
proposal of the Transformer model, we apply a positional encoding
to the input word embeddings. To generate the captions, the decoder
can be sampled until the desired caption length is met or a special
token indicating the end of a sentence is produced.

3. EVALUATION

In our study, we compare the performance of four pre-trained audio
processing models, two audio embedding adapters, and four pre-
trained NLP models for AAC, using the AAC dataset Clotho [25].

3.1. Dataset, metrics, and experiments

The Clotho dataset contains a training, a validation, and an evalu-
ation split, comprising 3839, 1045, and 1045 audio examples, re-
spectively. Each audio example is annotated with five captions, and
we consider one audio-caption pair a single training example. The
performance is assessed using the SPIDEr score [26]. This metric
is widely established in the community (e.g. in the AAC task from

1For a complete description of the Transformer decoder, refer to [21].
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Figure 1: Model architecture.

the 2021 DCASE Challenge2) as it highly correlates with the human
judgment of caption quality [26].

In all our experiments, the decoder part of our model consists
of N = 3 stacked Transformer decoder blocks with four 128-
dimensional attention heads each, similar to what is used in [10,19].
During training, all models are optimized by minimizing the cross-
entropy loss between the predicted sentence and the target caption
using the Adam algorithm (α = 0.001, β1 = 0.9, β2 = 0.999, and
ε = 10−8) with a minibatch size of 256. Early stopping is applied
after ten epochs with no improvement of the loss calculated on the
held-out validation set. The best model according to this loss is then
evaluated on the evaluation set.

To avoid bias in the results, we repeat all experiments ten times
with different random initialization and report the mean statistic for
all scores. We test all combinations of encoder models with differ-
ent overlaps, audio embedding adapter layers, fixed or fine-tuned
word embeddings. In total, it constitutes 264 different settings.

3.2. Audio embedding models

For each employed audio embedding model, we follow the authors’
methodology to extract audio embeddings using their pre-trained
models. We use the pre-trained models as encoders with frozen
weights, i.e. without fine-tuning.

Existing AAC approaches use audio encoders with different
hop-sizes. In this work, we study the impact of using overlap when
extracting the audio embeddings. More specifically, we use two dif-
ferent settings for the embedding extraction hop-size, correspond-
ing to 50% overlap and no overlap.

Table 1: Audio encoder models compared in this study.

Encoder Dimensionality Window Learning

VGGish 128 0.96 s supervised
YAMNet 1024 0.96 s supervised
OpenL3 512 1.00 s self-supervised
COALA 1152 2.20 s contrastive

2http://dcase.community/challenge2021/
task-automatic-audio-captioning
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Table 1 gives an overview of the audio source models we com-
pared. All four are CNN-based models. The first, VGGish [23],
is inspired by the VGG architecture mainly used in computer
vision [27]. It was trained on a preliminary version of the YouTube-
8M dataset in a supervised fashion [28]. It extracts 128-dimensional
embeddings from roughly 1 second of audio. The second audio em-
bedding model is YAMNet, which also draws inspiration from
computer vision models [23]. It employs a MobileNet [29] ar-
chitecture to extract embeddings with dimensionality 1024 from
almost 1 second of audio. The model was trained to predict 521
audio event classes on the AudioSet dataset [30]. The third model,
OpenL3 [31], is a modified and freely available version of the
L3-Net [32]. OpenL3 is trained in a self-supervised way in an
audio-visual correspondence task, relying on videos from Au-
dioSet. From the multiple variants that the authors provide, we
chose the model configuration that produces an embedding of size
512, and that was trained with 128 Mel bands as input representa-
tion in the environmental sound setting. The fourth and final model
is COALA [33], a model trained by taking advantage of user-
provided tags in Freesound3 [34]. During training, it employed
a contrastive learning approach to align audio and associated tag
embeddings, producing an audio embedding model that can extract
semantically enriched audio representations. The model produces
embeddings from 2.2-second patches.

3.3. Adapter Layers

We compare two different adapter architectures that are depicted in
Figure 2 and contrast them with applying no adapter, which we refer
to as the identity function. The aim is to investigate if one kind of
adapter can improve the performance of a Transformer-based AAC
method. Moreover, the adapters ensure a match in dimension be-
tween the audio embeddings and the internal dimension of the de-
coder. It enables us to compare embeddings of different sizes —
from different models — with a fixed number of decoder parame-
ters. When not using any adapter, the first decoder layer changes in
size depending on the embeddings’ dimensionality.

As the first adapter, we employ a two-layer MLP with a hid-
den layer of size 256 and rectified linear unit (ReLU) as activation
function, as shown in Figure 2, to compute the adapted representa-
tion with weights shared across time. The second adapter layer is
an MHA block, followed by a linear layer and a layer normaliza-
tion process, also known as a Transformer encoder layer [21]. This
type of network was previously combined with a VGGish embed-
ding model in the context of AAC [5]. It complements our decoder
in such a way that our model architecture is similar to a full Trans-
former model for AAC [6]. The MHA block employs four attention
heads of 128 dimensions. A linear dimensionality reduction func-
tion as described in [6] and a positional encoding precede it.

3.4. Word embedding models

Our first word embedding model is word2vec [24], which is based
on the skip-gram algorithm. We use the publicly available model
pre-trained on three million words and phrases from Google News.

Our second model is GloVe [35], which takes a different ap-
proach by learning context information from corpus-level word-
word co-occurrence statistics rather than local context windows.
The authors show that GloVe is an improvement over the word2vec

3The training data from COALA and Clotho are disjoint sets.
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algorithm in downstream word analogy and Named Entity Recog-
nition tasks. We employ the publicly available model trained on
the combination of a 2014 Wikipedia copy and the Gigaword 5 cor-
pus [36], which together contain six billion tokens.

The third word embedding model is fastText, which imple-
ments several optimizations on top of the word2vec skip-gram
algorithm [37]. FastText provides better handling of multi-word
phrases, uses a weighted context, and considers subwords (i.e.
character n-grams). We use the publicly available model trained
with subword information on the Common Crawl corpus, which
contains 600B tokens and is significantly larger than the corpora
used for the Glove and word2vec model [38].

We employ BERT as our fourth model, which is a large lan-
guage model based on the Transformer architecture and can be used
as a feature extractor to extract word embeddings [39]. In contrast
to models mentioned above, such as word2vec, BERT also takes
the context of a token — the entire sentence — into account when
extracting embeddings, i.e. producing embeddings that are context-
sensitive. We use the BERTBASE configuration pre-trained on a
Wikipedia copy (2.5B words) and the BookCorpus dataset (800M
words) [40]. Different ways to use the layers of BERT as word em-
beddings have been discussed in the literature, and it is not clear
what the best choice is for AAC. We decided to use the penultimate
layer as embeddings as this can produce highly contextualized rep-
resentations that are not too task-specific [41]. We extract the word
embeddings from an entire caption. Due to the computational cost
of the model, it will not be fine-tuned in our experiments.

Additionally, to explore if pre-trained word embeddings can be
helpful, we also adopt randomly initialized word vectors and a con-
tinuous bag-of-words (CBOW) word2vec model [24] trained using
the text of the captions in the Clotho training set. Finally, all word
embedding models produce embeddings with W ′ = 300 dimen-
sions, except for those from the BERT model with W ′ = 768.

4. RESULTS AND DISCUSSION

In this section, we show and discuss the results of our experiment.
We organize our discussion around, first, the performance of the
different pre-trained audio encoder models. Second, we discuss the
usage of the different audio embedding adapter components. Third,
we study the performance of different word embedding models and
the impact of fine-tuning them. Finally, we show the potential of
computing audio embeddings on overlapped audio frames.

Table 2 lists the optimal settings for each of the audio encoder
models that we found, and Figure 3 displays box plots of the audio
encoder models’ performance for each adapter. The top-performing
model in the best overall setting (YAMNet, BERT, MHA) achieved
a SPIDEr score of 0.1914. Moreover, we found that YAMNet con-
sistently outperforms the other audio models. Overall, audio en-
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Table 2: Top-performing settings for pre-trained encoder models
and their SPIDEr score when embeddings are extracted with no or
50% overlap (?, and † respectively).

SPIDEr

Encoder Word
embedding Adapter Mean SD

COALA† BERT MHA-based 0.1495 0.0044
OpenL3? BERT MHA-based 0.1620 0.0051
VGGish? BERT MHA-based 0.1677 0.0052
YAMNet† BERT MHA-based 0.1793 0.0066
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Figure 3: Comparison of SPIDEr score for different encoder models
averaged over multiple different experiment settings.

coder models trained in a supervised classification task using large
datasets, YAMNet & VGGish, are superior to the models that are
trained in a self-supervised way or using contrastive learning. This
highlights the potential of using large datasets for pre-training audio
encoders in auto-tagging tasks and using them for AAC.

Using an MHA-based encoder as an adapter on top of the au-
dio embeddings consistently provides the best results (Figure 3 and
Table 2), whereas using the MLP does not provide any improve-
ment in comparison with no adapter. Interestingly, the benefit of
the MHA-based adapter is most prominent for OpenL3, which has
been trained in a self-supervised way. This suggests that the audio
embeddings extracted with OpenL3 contain some semantics useful
for AAC that can be exploited using an adapter such as the MHA-
based one. Our results suggest that employing a Transformer-based
encoder using positional encoding and MHA can process sequences
of audio embeddings, leading to better performance in AAC, which
aligns well with findings from previous works [6, 10].

The left part of Figure 4 reports a performance comparison of
the different word embeddings employed in our evaluation. On av-
erage, using the pre-trained BERT model to extract the word em-
beddings leads to the best performance. It is worth mentioning that
we are using BERT as a fixed external word embedding model in-
stead of using its full capacity, for example, by fine-tuning it for
AAC. However, the latter would require much more computational
resources (the BERT model has around 110M parameters).

Training word embedding representations from scratch during
AAC provides already promising results. By using pre-trained
word embeddings, such as word2vec, GloVe, and fastText, we can
slightly improve this performance. Additionally, fine-tuning them
can significantly improve their performance (one-sided Wilcoxon
signed-rank tests p < 0.001, for each pre-trained word embedding
model). Interestingly, optimizing the randomly initialized word
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Figure 4: SPIDEr sores for word embedding (left) and audio em-
bedding models (right). Scores are averaged over all combinations
is each case.

representations does not improve their performance. This high-
lights the need for pre-trained word representations in the context
of our AAC task.

The right side of Figure 4 displays the performance of the au-
dio models with and without overlap when extracting the embed-
dings. In particular, we observe that computing the embeddings
with 50% overlap leads to improved performance with two audio
encoders. One-sided Wilcoxon signed-rank tests indicated that this
improvement is significant for COALA (W = 84, p < 8.08e−07)
and YAMNet (W = 112, p < 3.92e−06).

5. CONCLUSION

In this paper, we conduct a comparative analysis of many off-the-
shelf resources from natural language processing (NLP) and the ma-
chine listening field for automated audio captioning (AAC). The
core components of our method are a fixed audio encoder, an audio
embedding adapter, and a Transformer-based decoder. Our results
show that YAMNet outclasses the other audio embedding models
when used as an encoder. The performance can be increased for two
encoders (COALA & YAMNet) by computing the embeddings on
overlapped frames. Processing the audio embeddings with a multi-
head attention-based adapter can increase the performance of our
captioning system while using a multi-layer perceptron is not dif-
ferent from not using any adapter. We found that pre-trained word
embedding models are a valuable resource for AAC, particularly so
when fine-tuned during the training. Using BERT as a fixed embed-
ding extraction model gave the best results. This result motivates
the usage of large pre-trained NLP models such as BERT to create
better AAC methods.

Future work could investigate the impact of the positional en-
coding in the audio adapter by independently evaluating the multi-
head attention adapter. Finally, fine-tuning the audio embedding
models has not been studied in this work. However, it may be an
essential technique that can benefit AAC approaches, as highlighted
by the fact that adding an adaptation model to process the embed-
dings significantly increases the performance of our system.
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