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ABSTRACT

Sound event localization and detection (SELD), which jointly per-
forms sound event detection (SED) and sound source localiza-
tion(SSL), detects the type and occurrence time of sound events as
well as their corresponding direction-of-arrival (DoA) angles simul-
taneously. In this paper, we propose a method based on Adaptive
Hybrid Convolution (AHConv) and multi-scale feature extractor.
The square convolution shares the weights in each of the square ar-
eas in feature maps making its feature extraction ability limited. In
order to address this problem, we propose a AHConv mechanism in-
stead of square convolution to capture the dependencies along with
the time dimension and the frequency dimension respectively. We
also explore a multi-scale feature extractor that can integrate in-
formation from very local to exponentially enlarged receptive field
within the block. In order to adaptive recalibrate the feature maps
after the convolutional operation, we design an adaptive attention
block that is largely embodied in the AHConv and multi-scale fea-
ture extractor. On TAU-NIGENS Spatial Sound Events 2021 devel-
opment dataset, our systems demonstrate a significant improvement
over the baseline system. Only the first-order Ambisonics (FOA)
dataset was considered in this experiment.

Index Terms— DCASE2021, Sound source localization,
Sound event detection, Adaptive hybrid convolution

1. INTRODUCTION

Sound Event Localization and Detection refers to the problem of
identifying the presence of independent or temporally-overlapped
sound sources, correctly identifying to which sound class it belongs,
and estimating their spatial directions while they are active. In real-
istic aural environments, there are numerous co-occurring different
sounds emitted from the sources distributed in space. Even humans
cannot all correctly identify and locate multiple sources of sound,
so it is very challenging for machines. To solve the SELD problem,
two key issues denoted as sound event detection (SED) [1–5] and
sound source localization (SSL) [6–13] have to be addressed.

The methodology proposed in this paper is based on the SELD-
Net proposed by Adavanne et al [14]. A convolutional recurrent
neural network (CRNN) model was proposed for joint SSL and
SED of multiple overlapping sound events in three-dimensional
space. The phase and magnitude of spectrogram were calculated
separately on each audio channel as input features. In order to
learn both inter-channel and intra-channel features, the input was
fed through three consecutive convolutional blocks. Bidirectional

Gate Recurrent Unit (BiGRU) was used for temporal context infor-
mation learning. The output of the BiGRU is fed into two parallel
branches of fully-connected blocks. The classes for all sound events
would be output on each time-frame, and the sound source would
be located in the three-dimensional Cartesian coordinate system.

Compared with DCASE2020 challenge task 3, the main dif-
ference is the emulation of scene recordings with a more natural
temporal distribution of target events and, more importantly, the in-
clusion of directional interferences, meaning sound events out of
the target classes that are also point-like in nature. For each re-
verberant environment and every emulated recording, Interferences
are spatialized in the same way as the target events, resulting in
recordings that are more challenging and closer to real-life condi-
tions. The other difference is the elimination of the dedicated event
classification output branch, by adopting the activity-coupled carte-
sian direction of arrival (ACCDOA) training target which unifies
the localization and classification losses in a homogenous regres-
sion vector loss, pioneered by Shimada et al [15].

In this paper, we also propose a CRNN framework based on
SELD-Net architecture. We adopt Adaptive Hybrid Convolution
(AHConv) mechanism and multi-scale feature extractor to handle
feature learning insufficiently. The logmel spectrogram and nor-
malized sound intensity vector are extracted as input features. In-
stead of conventional square convolution, the AHConv structure is
design to process richer spatial features and increase feature diver-
sity by asymmetric convolution. We adopt a multi-scale feature to
extract strategy that was designed to capture the longer temporal
context information than the conventional convolution. Moreover,
the parallel structure is applied in adaptive attention block which
adaptive mitigates interference between the channel-wise and time-
frequency-wise by exploring two different branches. Additionally,
the adaptive attention block can also promote the robustness when a
single branch is disturbed by the ambient noise without the presence
of sound events. Furthermore, we conduct experiments on TAU-
NIGENS Spatial Sound Events 2021 development dataset to verify
the effectiveness of our proposed method.

This paper is organized as follow: we will introduce the pro-
posed method in Section 2. The experiment setup will be stated
in Section 3. The development results compared with the baseline
method will be described in Section 4. Finally, we draw a conclu-
sion and future work in Section 5.
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Figure 1: The overall of our proposed method.

2. PROPOSED METHOD

We proposed a method with Adaptive Hybrid Convolution (AH-
Conv) and multi-scale feature extractor which achieves great perfor-
mance to deal with SELD task in the noisy and reverberant scenes.
The proposed network can predict the sound event classes active
for each of the input frames along with their respective spatial loca-
tion, and produce the temporal activity and DOA trajectory for each
sound event class. The network diagram is illustrated in Fig. 1. For
the multichannel audio, the logmel spectrogram and sound inten-
sity vector are extracted as the input features of the network. The
multi-scale feature extractor as depicted in Fig. 2, then followed
five AHConv blocks and five average pooling layers. After that, the
time dimension is downsampled 5 times and the frequency dimen-
sion is downsampled 32 times. Bidirectional Gated Recurrent Unit
(Bi-GRU) is used to learn the temporal context information. This is
followed by fully connected layers. We adopt the ACCDOA output
which unifies the SED and SSL losses into a single homogeneous
regression loss.

2.1. Multi-scale Feature Extractor

Among the various CNN architectures, if the network contains
shorter connections between layers close to the input and those
close to the output, it can be substantially deeper, more accurate,
and efficient to train, to further improve the information flow be-
tween layers [16]. In this work, we combine the advantages of
DenseNet and dilated convolution, and propose an extractor called
multi-scale feature extractor. To properly combine DenseNet with
the dilated convolution [17], we propose a multi-scale feature ex-
tractor that has a multiple dilation factor within a single layer. The
dilation rate depends on which skip connection the channels come
from, as shown in Fig. 2. The output of each dilated layer is
fed into an adaptive attention block. The adaptive attention block
reweighs the information of channel-wise and of spatial-wise di-
mension. That can enhance the important features and weaken the
less important features. The outputs of the lth layer xl receives the
feature-maps of all preceding layers express as:

Conv2d(dilation_rate=1, 2)

Conv2d(dilation_rate=1)

Conv2d(dilation_rate=1, 2 , 4)

Adaptive attention block

Figure 2: Multi-scale feature extractor, the feature maps of each
layer are concatenated together, and the dotted box indicates the
concatenate operation

xl = ψ([x0, x1, x2, ...xl−1]⊛ kd=1,2,...2l−1

l ) (1)

where [x0, x1, x2, ...xl−1] denotes the concatenation of the feature
maps from 1, ...l − 1 layers, ψ is a nonlinear transformation con-
sisting of batch normalization (BN) followed by ReLU and dilated
convolution with the kl kernel, ⊛ denotes convolution operation and
d is the dilated rate in each layer.

2.2. Adaptive Hybrid Convolution

Some of the prior works [18, 19] have shown that a standard square
convolutional layer with a filter size of k × k can be factorized as
a sequence of two layers with k × 1 and 1 × k filters to reduce
network complexity and lighten the computational burden. This
asymmetrical convolutional [18] structure is better than a square
convolutional structure for processing more and richer spatial fea-
tures and increasing feature diversity. In addition, asymmetric con-
volution can obtain faster calculation speed and smaller parameter
amounts while ensuring performance. The weight learning of the
square convolution relies on the network but is limited by the size
of the filter. Therefore, the square convolution is not captured fine-
grained time-frequency features. In order to address this problem,

131



Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

 Adaptive attention block

 Adaptive attention block

Å

Figure 3: Adaptive Hybrid Convolution (AHConv). Each color rep-
resents a different convolution kernel, and the squares represent the
convolution graph.

we propose a hybrid convolution mechanism based on the asym-
metric convolutional structure, as shown in Fig. 3.

A parallel structure is composed of a filter size 1 × 3 and 1× 5
for time frames, and a filter size 3 × 1 and 5 × 1 for frequency bins,
thus the time dependency and frequency dependency are capture re-
spectively. Then, the feature maps concatenated along the channel
dimension will undergo an adaptive attention block to select the
feature adaptively according to the importance. The output of the
adaptive attention module will be fed into four asymmetric convo-
lutions and one adaptive convolution again, and the importance of
features will be marked more accurately. Finally, in order to pre-
serve the original feature information, we add the original input to
the recalibrated output.

2.3. Adaptive Attention block

We design an adaptive attention block as seen in Fig 4. The up half
part denotes the path of channel attention (CA) [20], and the lower
half part the time-frequency attention (TFA) [21]. In the channel
attention path, Global Average Pooling (GAP) converts the infor-
mation of the TF field of each channel into a value that has the
overall information of the channel. To make full use of the aggre-
gated information in the GAP operation, we follow it with fully
connected convolution which aims to capture channel-wise depen-
dencies. In the time-frequency attention path, a 2-D convolutional
layer with (1,1) kernel size is employed to obtain the global fea-
ture maps across the time-frequency (TF) domain. Then sigmoid
activation limits the values in the range of (0,1).

After that, different weights are applied to the channel and the
TF domain, which can guide the network to pay different attention
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Figure 4: Adaptive attention block.

to the features of channel-wise and time-frequency-wise. The fea-
ture maps of each part will concatenate along the channel dimension
and then pass through a depthwise separable convolution [22]. The
depthwise separable convolution can not only adaptively capture
useful information between channels, but also reduce the number
of operational parameters. The adaptive attention block is largely
embodied in the AHConv and multi-scale feature extractor.

3. EXPERIMENT SETUP

3.1. Dataset

The development set of TAU-NIGENS Spatial Sound Events 2021
has two types of data, one is 4 channel directional microphone
array (MIC) from the tetrahedral array and the other one is first-
order ambisonic (FOA) data. We used the FOA format for the chal-
lenge. The SELD development dataset consists of 600 one-minute
audio clips divided into training, validation, and test set of size 400,
100, and 100 clips, respectively. The development dataset is dis-
tributed between 12 classes of alarm, crying baby, crash, barking
dog, footsteps, knocking on door, female speech, male speech, fe-
male scream, male scream, ringing phone and piano. Additionally,
dry recordings of disparate sounds not belonging to any of those
classes are also spatialized in the same way to serve as directional
interference. The sounds are sourced from the running engine, burn-
ing fire, and general classes of NIGENS database [23]. The source
position for a static event is drawn randomly from the pool of spa-
tial room impulse responses (SRIRs) of a single room used in that
recording, while moving events are synthesized for one of the mea-
sured trajectories in the room.

3.2. Evaluation metrics

The performance of our proposed model is evaluated by the indi-
vidual metrics for SED task and SSL task. Standard polyphonic
SED metrics, F-score (F1) and error rate (ER) across segments of
one second without overlapping are utilized [24]. The DOA estima-
tion in the SSL task was evaluated using frame-wise metrics [25]
of DOA error (DE) and frame recall (FR). Considering that a TP is
predicted only when the spatial error for the detected event is within
the given threshold of 20◦ deviates from the reference, ER and F1
replaced with ER20◦ and F20◦ . Classification-dependent localiza-
tion metrics are computed only across each class, instead of across
all outputs, DE and FR are replaced with LECD and LRCD . A
more detailed description can be obtained in [25, 26].
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3.3. Training procedure

The sampling frequency was used at 24 kHz in our method. Extract-
ing log-mel spectrograms in 64 melbands from 1024-point FFTs,
using a 40 ms window and 20 ms hop length. We use a batchsize of
64. Moreover, to ensure a fair comparison, all models were trained
for 500 epochs with the Adam optimizer of the same initialized pa-
rameters. An early stopping mechanism is used to avoid overfitting
during training, where the training is stopped if no improvements
on validation split for 50 epochs.

4. RESULT AND DISCUSSION

In this section, we will describe and discuss the experimental re-
sults. Firstly, we explored the most appropriate combination of
asymmetric convolution for AHConv, and then analyzed the effect
of dilated convolution and adaptive attention block in the multi-
scale feature extractor with ablation experiments. All the experi-
ments were performed without data augmentation.

Table 1: Explore the combination type of AHConv (+A denotes
adding adaptive attention block)

The type of combination ER20◦ F20◦ (%) LECD LRCD(%)

Baseline(3×3) 0.73 30.7 24.5 44.8

1×3,3×1 0.68 42.2 22.6 51.6

(1×3,3×1)+A 0.61 44.7 21.0 54.4

1×5,1×3,3×1,5×1 0.64 43.7 21.9 52.4

(1×5,1×3,3×1,5×1)+A 0.56 46.0 20.7 55.7

1×7,1×5,1×3,3×1,5×1,7×1 0.66 43.1 23.1 50.7

(1×7,1×5,1×3,3×1,5×1,7×1)+A 0.58 44.8 20.8 53.3

In order to explore the AHConv in Fig. 3, we performed the
experiments without the multi-scale feature extractor. That is the
input features of log-mel spectrum and sound intensity vector were
directly fed into AHConv. In table. 1, we have explored many com-
binations of asymmetric convolution. Only using 1×3 and 3×1
can’t get enough features on frequency domain and time domain,
while using 1×7, 1×5, 1×3, 3×1, 5×1 and 7×1 will degrade
performance which may result in too many useless features being
captured. The effect is best when the combinations of asymmetric
convolution are 1×5, 1×3, 3×1 and 5×1. The results show that
this combination of hybrid convolution can fully learn the features
of different frequency domains and time domains simultaneously,
which is very effective for SELD task. In addition, we also add
adaptive attention block to the experiment. The experimental com-
parison of the same kind of hybrid convolution shows that the per-
formance can be improved by adding the adaptive convolution.

Table.2 shows the results of ablation experiments of our pro-
posed method. The first row denotes the scores of the baseline
method. This method is the official baseline system of DCASE
2021 challenge task 3, and all of our experiments are based on
it. The second row denotes the scores of the baseline method that
adding the multi-scale feature extractor. After the multi-scale fea-
ture extractor, the AHConv is replaced by conventional CNN sim-
ilar to the baseline method. Compared with the results of the first

Table 2: The results of ablation experiments

Method ER20◦ F20◦ (%) LECD LRCD(%)

baseline 0.73 30.7 24.5 44.8

+Extractor 0.57 49.4 20.0 56.8

+Extractor +AHConv 0.53 55.1 18.8 61.6

row, the scores in the second row decrease 0.16 and 4.5 on ER20◦

and LECD , and increase 18.7% and 12.0% on F20◦ and LRCD ,
respectively. This proves the usefulness of multi-scale feature ex-
tractor. The last row denotes the scores of the method that adding
multi-scale feature extractor and AHConv. This is the network that
we proposed in Fig. 1. Compared with the results of the second row,
the scores in the last row further decrease 0.04 and 1.2 on ER20◦

and LECD , and increase 5.7% and 4.8% on F20◦ and LRCD , re-
spectively. These results verified the effectiveness of the AHConv.

Table 3: The results of exploring the validity of depthwise separable
convolution (DSConv)

Method ER20◦ F20◦ (%) LECD LRCD(%)

Conv(1×1) 0.57 52.6 19.6 58.1

DSConv 0.53 55.1 18.8 61.6

In addition, we also explored the effectiveness comparison of
conventional 2-D convolution and DSConv in the adaptive attention
block. The method in the first row denotes adding a 2-D convolution
with 1×1 kernel at the end of each path and then adding it. The sec-
ond row is using depthwise separable convolution in our proposed
method as seen in Fig. 4. Comparing two adaptive methods, the
results showed that DSConv performed better.

5. CONCLUSIONS

In this paper, we propose a SELD method based on Adaptive Hy-
brid Convolution (AHConv) and multi-scale feature extractor. AH-
Conv is designed to capture the time and frequency dependencies.
Multi-scale feature extractor is designed to extract the multi-scale
feature maps. We also propose an adaptive attention block embod-
ied in AHConv and multi-scale feature extractor. Through a series
of ablation experiments on the development dataset, we verify the
effectiveness of AHConv and multi-scale feature extractor respec-
tively. The results also show that our proposed method outperforms
the baseline method on four evaluation metrics. Next we will intro-
duce data augmentation methods to improve the performance of our
proposed method.
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