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ABSTRACT

Automated audio captioning (AAC) has developed rapidly in re-
cent years, involving acoustic signal processing and natural lan-
guage processing to generate human-readable sentences for audio
clips. The current models are generally based on the neural encoder-
decoder architecture, and their decoder mainly uses acoustic infor-
mation that is extracted from the CNN-based encoder. However,
they have ignored semantic information that could help the AAC
model to generate meaningful descriptions. This paper proposes
a novel approach for automated audio captioning based on incor-
porating semantic and acoustic information. Specifically, our au-
dio captioning model consists of two sub-modules. (1) The pre-
trained keyword encoder utilizes pre-trained ResNet38 to initialize
its parameters, and then it is trained by extracted keywords as la-
bels. (2) The multi-modal attention decoder adopts an LSTM-based
decoder that contains semantic and acoustic attention modules. Ex-
periments demonstrate that our proposed model achieves state-of-
the-art performance on the Clotho dataset. Our code can be found
at https://github.com/WangHelin1997/DCASE2021_
Task6_PKU.

Index Terms— Audio captioning, pre-training, multi-modal at-
tention, keyword classification

1. INTRODUCTION

Automated audio captioning (AAC) is a cross-modal task of gener-
ating a natural language description for an audio clip. It is different
from audio tagging (AT), acoustic scene classification (ASC) and
automatic speech recognition. The purpose of AAC is not only to
analyze acoustic scenes, events, and concepts in a given audio clip,
but also to find the relationships among them to produce human-
readable sentences. Applications of automated audio captioning are
diverse such as assisting the hearing impaired people by convert-
ing audio signals into a text, and content-based audio retrieval task
which uses the free-form natural language queries to retrieve the
audio [1].

AAC has aroused a lot of interest among researchers since
the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2020 challenge. Nowadays, the mainstream framework is
based on neural encoder-decoder systems which have achieved suc-
cess in some relevant fields such as image captioning [2]. The cur-
rent AAC models consist of a convolutional neural network (CNN)
encoder and a recurrent neural network (RNN) (or Transformer)

∗Yuexian Zou is the corresponding author.

decoder with an attention mechanism. The inputs used could be
log-mel energies, Mel-Frequency Cepstral Coefficients(MFCCs), or
other acoustic features which are extracted from raw audio clips.
They are firstly encoded by a CNN encoder into a set of feature
vectors. Then, they are decoded into sentences by an RNN-based
or Transformer-based decoder with (or without) an attention mech-
anism.

Over past few years, there are amounts of methods proposed in
AAC task [3, 4, 5, 6, 7] based on neural encoder-decoder systems.
M. Wu et al. [3] straightly takes the mean of the feature vectors
that are the outputs of the encoder in the time dimension, and uses
them as the input of the decoder. H. Wang et al. [5] proposed a
temporal attention mechanism in the decoder, which could utilize
more acoustic information for each time step. In contrast to previ-
ous work in AAC, Y. Wu et al. [4] and X. Xu et al. [6] explore trans-
fer learning method to help AAC models to get better performance.
The strategy of their proposed methods could be divided into two
stages. In the first stage, a tagging system is pre-trained by ASC or
AT task. Then the parameters of the audio encoder are initialized
by the pre-trained tagging system. In the second stage, the whole
AAC model is trained end-to-end by minimizing the cross-entropy
(CE) loss. With these methods mentioned above, they generally
only consider acoustic information while ignoring semantic infor-
mation when the AAC model generates sentences. Specifically, the
semantic information could contain keywords that are from the en-
coder, previously predicted words in the decoding time, and so on.
In this paper, we introduce semantic information with acoustic in-
formation to assist the decoder to generate higher quality sentences.
Furthermore, to better make use of semantic and acoustic informa-
tion, we propose a novel multi-modal attention mechanism. In sum-
mary, our contributions are as follows:

1. We propose a multi-modal attention-based audio captioning
model with a pre-trained keyword encoder, named MAAC.
It could utilize both acoustic and semantic information to
generate the description. The semantic information includes
keywords from the pre-trained keyword encoder and the pre-
viously decoding information from the decoder.

2. Our MAAC achieves a new state-of-the-art performance on
the Clotho dataset. We present the ablation analysis of the
components of our MAAC and demonstrate that seman-
tic information could improve the performance of the AAC
model.

The organization of the paper is as follows. Section 2 intro-
duces our proposed model. We present our experimental results
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Figure 1: (a) Our proposed MAAC includes two submodules: the pre-trained keyword encoder is on the top and the LSTM-based decoder
with a multi-modal attention module is on the bottom. (b) The architecture of the attention mechanism. F could represent acoustic features
or semantic features.

and evaluations in Section 3. Finally, we give concluding remarks
and possible future directions in Section 4.

2. SYSTEM ARCHITECTURE

In this section, our proposed MAAC is introduced and its architec-
ture is shown in Figure 1. Specifically, our MAAC consists of two
submodules: a pre-trained keyword encoder and an LSTM-based
decoder with a multi-modal attention module. In the following sub-
sections, we will introduce details about it.

2.1. Pre-trained Keyword Encoder

The CNN encoder, which is widely used in the AAC challenge [4,
5], plays an important role in extracting acoustic information from
raw audios. In this work, we extract keywords from captions as
training labels and use the pre-trained ResNet381 [8] that performs
well in the AudioSet dataset [9] as our backbone network.
Constructing Audio-Keyword Training Pairs Firstly, Natural
Language Toolkit (NLTK2) is a powerful open-source tool applied
to extract words from each caption. We choose the nouns and verbs
to construct the keyword table by getting rid of some useless words
such as make, go, others, etc. The verbs in the keyword table are
transformed into their original forms and the nouns are not changed,
because plural forms of the nouns have different meanings. Then,
we choose N keywords with the highest frequency from the modi-
fied keyword table and use them as labels for pre-training.

We combine all the keywords from the 5 captions of each audio
clip to form the training label which is a multi-hot vector. Each
word of captions is transformed into its original forms according
to the above rules. When a word occurs in the keyword table, the
corresponding position of the multi-hot vector is set to 1, otherwise
0.

1https://github.com/qiuqiangkong/audioset_
tagging_cnn

2https://github.com/nltk/nltk

Training the Keyword Encoder As Figure 1 illustrates, the pre-
trained ResNet38 is used as our backbone, which consists of 6 con-
volutional blocks. We refine it with a feature hierarchy structure to
combine multi-level features, i.e. the features after the third, fourth,
and last convolution block. Then all of them are passed into differ-
ent linear layers after the global average pooling (GAP) method to
obtain f1, f2 and f3. Finally, we use them to obtain the predictions
ŷ ∈ RN and N is the number of keywords.

ŷ = σ(Linear(concat(f1, f2, f3))) (1)

where σ denotes sigmoid activation function. Given the ground-
truth y ∈ RN , the pre-trained keyword encoder could be optimized
by minimizing the binary cross-entropy loss:

Lbce(y, ŷ) = − 1

N

N∑
i=1

y(i)log ŷ(i) (2)

2.2. Multi-modal Attention Decoder

Unlike the existing audio captioning models, we further incorporate
acoustic with semantic information into generating captions: we
propose a multi-modal attention module to incorporate them. The
high-level representation of acoustic information denoted as X =
{x1, ..., xL} ∈ RL×C1 , is the output of a linear layer whose input
is the output of the last convolution block of the pre-trained key-
word encoder. The semantic features contain the keywords W =
{w1, ..., wK} that is the K outputs of the pre-trained keyword en-
coder, and the previously predicted words P = {p1, ..., pt−1} that
contain all the generated words before time step t. Both of them
are transformed into continuous vectors by a randomly initialized
embedding layer Emb, W ∈ RK×C2 and P ∈ R(t−1)×C2 . The
implementation process of the multi-modal attention module is as
follows.

Firstly, all of them are transformed into the same latent space,
whereX is turned to X̂ ∈ RT×C ,W becomes Ŵ ∈ RK×C and P
becomes P̂ ∈ R(t−1)×C . Then the hidden states as intermediaries

41

https://github.com/qiuqiangkong/audioset_tagging_cnn
https://github.com/qiuqiangkong/audioset_tagging_cnn
https://github.com/nltk/nltk


Detection and Classification of Acoustic Scenes and Events 2021 15–19 November 2021, Online

Table 1: Single-model performances on the Clotho [10] evaluation splits in the CE and RL training period. B1, B4, RG, ME, CD, SP, and SD
denote BLEU-1, BLEU-4, METEOR, ROUGE-L, CIDEr-D, SPICE, and SPIDEr, respectively. For all metrics, higher values indicate better
performance.

Cross-entropy CIDEr-D optimization

Model B1 B4 RG ME CD SP SD B1 B4 RG ME CD SP SD

Baseline [10] 37.8 1.7 26.3 7.8 7.5 2.8 5.1 - - - - - - -
TAM [5] 48.9 10.7 32.5 14.8 25.2 9.1 17.2 - - - - - - -
TM [4] 53.4 15.1 35.6 16.0 34.6 10.8 22.7 - - - - - - -

UNIS’s model [11] - - - - - - - 62.5 17.8 40.1 17.6 42.8 12.6 27.7
SJTU’s model [12] 56.5 15.5 37.4 17.4 39.9 11.9 25.9 64.0 16.3 40.4 17.8 44.9 12.3 28.6

MAAC (Ours) 57.7 17.4 37.7 17.4 41.9 11.9 26.9 64.8 18.1 40.8 19.0 49.1 13.1 31.1

Table 2: Settings and results of ablation studies. The results are re-
ported after CE training stage. SAM denotes the semantic attention
module.

Model B4 CD SD

Base 16.5 40.6 26.4

+ Previously predicted words 17.1 41.1 26.4
+ Keywords can not converge
+ Both (w/o sharing SAM) 16.8 41.1 26.7

proposed MAAC 17.4 41.9 26.9

connect X̂ , Ŵ and P̂ , through a multi-modal attention mechanism
that is shown in Figure 2. Taking the acoustic information for ex-
ample: given the previous LSTM hidden state ht−1, we use a single
fully-connected layer followed by a softmax function to generate
the attention distributions α of acoustic features in the time dimen-
sion. Finally, the gated linear unit (GLU) is applied to the output
of the attention module, to control how much information should
flow into the next layer. Formula (3)-(5) are the definitions of the
acoustic attention module Ψx:

A = ReLU((X̂W T
i + bi)⊕ (ht−1W

T
s + bs)) (3)

α = softmax(AWn + bn) (4)

ox = GLU([X̂ ⊗α, ht−1]) (5)

where Ws ∈ RM×H , Wi ∈ RM×C , Wn ∈ RM are trans-
formation matrixes that map acoustic features and hidden states
to the same dimension. Here are bs ∈ RM , bi ∈ RM , and
bn ∈ R1. We denote ⊕ as the element-wise addition of a matrix
and a vector, and ⊗ as the element-wise multiplication of a matrix
and a vector. We choose the GLU operation to obtain the output
ox ∈ RC , which implements a simple gating mechanism over the
output Y = [A,B] ∈ R2d:

GLU([A,B]) = A⊗ σ(B) (6)

where A ∈ Rd,B ∈ Rd are the inputs to the non-linearity, and the
output GLU([A,B]) ∈ Rd is half the size of Y [13].

As for the semantic information, the same structure of the atten-
tion module is applied to keywords and previously predicted words,
and the outputs are ow ∈ RC and op ∈ RC respectively. Note each
part of semantic information shares an attention module. We add

ox, ow, op with wt−1 which is a predicted word of the last time
step to obtain the output ot. Then, ot and ht−1 are sent to calcu-
late the hidden state ht which is used to predict word probability
distribution vt. Finally, the current word wt is chosen from vt with
the highest probability and added to previously predicted words P
for the next iteration of LSTM. Formula (7) is the operation of the
multi-modal attention module described above:

h0 = GAP (X̂)

ht = LSTM(ht−1, Add(ox, ow, op,Emb(wt−1)))

vt = Softmax(Linear(ht))

(7)

where h0 represents the global information of acoustic features in
the time dimension. vt ∈ R|Σ| is a probability vector, and |Σ| is a
predefined dictionary including all words.

3. EXPERIMENT

3.1. Dataset and Experiment Setup

Clotho v2 We evaluate our proposed method on the Clotho v2
dataset [10], which is published in DCASE 2020 and expanded in
DCASE 2021. Nowadays it contains 5,929 audio clips labeled with
5 captions for each, including 3,839 training, 1,045 validation, and
1,045 testing audio clips. We convert all sentences to lower case
and remove all punctuation marks, ending up with a vocabulary |Σ|
of 4368 words including special tokens ”BOS”, ”EOS”, and ”PAD”.
For evaluation, we employ standard evaluation metrics: BLEU [14],
ROUGE-L [15], METEOR [16], CIDEr-D [17], SPICE [18] and
SPIDEr that is the mean of CIDEr-D and SPICE. All metrics are
computed with the audio captioning evaluation tool3.
Implementation Details We choose N = 300 keywords for pre-
training encoder, K = 5 keywords and the dimension of fully-
connected layers C1, C2 and C are 512. The decoder LSTM has
512 hidden units, word embedding size is also set to 512. To miti-
gate overfitting, dropout regularization [19] is used in the word em-
bedding layer with a rate of 0.5, and the word classification layer
with a rate of 0.25.

The training strategy of the MAAC could be divided into two
stages: encoder pre-training and the whole MAAC model training.
In the phase of training the encoder, firstly the CNN backbone is
frozen up, trained with the initial learning rate of 1 × 10−3 for 80

3https://github.com/audio-captioning/
caption-evaluation-tools
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(i)

Example 1:
MAAC: Birds are chirping in the background as a door opens and closes.
Keywords: chirp, bird, door, close, open.
GT1: Birds in a zoo are chirping as their cage door are being opened and closed.
GT2: Birds chirping while people move things around and talk in the background.

Example 2:
MAAC: A door creaks as it opens and closes.
Keywords: door, open, creak, close, chair.
GT1: A door creaks as it opens and shuts.
GT2: A door is creaking back and forth in the wind.

Example 3:
MAAC: Cars are passing by and birds are chirping in the background.
Keywords: car, drive, vehicle, pass, bird.
GT1: Birds chirping in the background while a car is driving by.
GT2: A car drives by as birds chip in the background.

(ii)

1.0

0.5

Keywords Previously predicted words

Figure 2: (i) It shows some examples of MAAC outputs and colored words indicate that keywords appear in both predicted and ground-truth
sentences. (ii) The visualization for attention matrices of keywords and previously predicted words in the semantic attention module of
example 1.

epochs. Next, we finetune the whole keyword encoder with the
learning rate of 5 × 10−4 for 25 epochs. Then, it can be divided
into two parts for training the whole MAAC: CE training and RL
fine-tuning. CE training takes 30 epochs while the parameters of
the pre-trained keyword encoder are frozen. Finally, the 30th CE
training model is used for reinforcement learning (RL) fine-tuning
55 epochs. In all training stages, we adopt an Adam optimizer with
a mini-batch size of 32, and exponential decay to adjust the learning
rate with a factor of 0.98 every epoch. The initial learning rates
are set to 3 × 10−4 and 5 × 10−5 for two parts of training the
whole MAAC. In the inference stage, we adopt beam search with
a beam size of 4 that is implemented to achieve the best decoding
performance.

In order to avoid over-fitting and increase data diversity,
SpecAugment [20], SpecAugment++ [21], Mixup [22], Label
smoothing [23] and teacher forcing [24] are used in the training
phase. For Mixup method, it is just used in the training of the key-
word encoder. The label smoothing and teacher forcing are just
used while training the whole MAAC.

3.2. Result Analysis

We compare our proposed MAAC with the following current mod-
els: (1) Baseline [10] is proposed by K. Drossos et al., which
employs a GRU-GRU encoder-decoder framework; (2) Tempo-
ral attention model (TAM) [5] uses the CNN encoder and the
LSTM-based decoder with the temporal attention mechanism; (3)
Transformer-based model (TM) [4] adopts a pre-training strategy
to improve captioning performance; (4) UNIS’s model [11] uses
PANNs to initialize the parameters of the encoder and is pre-trained
on AudioCaps dataset [25]; (5) SJTU’s model [12] utilizes Au-
dioSet to pre-train its encoder in order to enhance the ability of the
encoder to recognize audio concepts. Both (5) and (6) adopt RL
training to obtain the final models.

Table 1 lists the results of various single models on the Clotho
dataset. Our MAAC achieves the highest score on all metrics in
the CIDEr-D optimization stage. In addition, the CIDEr-D score
of the proposed MAAC improves from 41.9 to 49.1 after further
optimizing CIDEr-D.

Through Figure 2 (i), we can find that the pre-trained keyword
encoder can almost recognize the main concepts i.e. keywords (e.g.
bird and chirp in example 1) of a given audio clip, and the keywords

may appear in different states in the ground-truth captions and the
predicted sentences. Figure 2 (ii) further shows that keywords and
previously predicted words are concerned to generate the current
word. For instance, when the decoder is generating “chirping”, it
pays more attention to the “birds” in the previously predicted words
but pays less attention to “birds” in the keywords. That is to say, pre-
viously predicted words and keywords are complementary to each
other in the semantic attention module.

3.3. Ablative Analysis

To quantify the impact of the proposed multi-modal attention mod-
ule, we compare our MAAC against a set of other ablated models
with different settings. The results of various models are shown in
Table 2. We firstly design the “base” model which does not use
previously predicted words and keywords (i.e. the semantic atten-
tion module). Then we add the information of previously predicted
words or keywords to the ”base” model. We find that it has little
impact on the performance of the model by only introducing previ-
ously predicted words. It might be that previously predicted words
would contain wrong words that destroys the input information of
the decoder. In addition, the model which only uses the keywords
in the semantic attention module could not converge. From section
3.2, we know that keywords contain the main concepts of an audio
clip. When we only utilize them in the semantic attention module,
they will cause the decoder to pay more attention to the part of the
keywords and ignore the overall semantic relationship. Moreover,
we examine the performance of using a shared (or not) semantic at-
tention module on its performance and find that a sharing semantic
attention module could further improve the CIDEr-D score.

4. CONCLUSION

In this paper, we propose a novel audio captioning model based on
the multi-modal attention module which utilizes both acoustic and
semantic information to generate captions. In addition, the perfor-
mance of the MAAC achieves a new state-of-the-art under the two
stages of training. The ablation experiments further demonstrate the
effectiveness of the multi-modal attention module. In future work,
we would concentrate on how to align the multi-modal information
more effectively to improve the performance of the AAC.
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