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ABSTRACT

Sound scene in real environment is generally composed of differ-
ent types of sound events meanwhile the time-frequency scales of
these events are diverse. Thus, it is important to design a proper
mechanism to extract the multi-scale features for sound event de-
tection (SED). In order to improve the discriminative ability of dif-
ferent types of sound events, we propose a multi-scale SED network
based on split attention. We design a Multi-scale (MS) module to
extract the fine-grained and the coarse-level features in parallel. A
Channel Shuffle (CS) operation is introduced to enhance the cross-
channel information communication among the features with dif-
ferent scales. Also, a Split Attention (SA) module is designed to
learn several sub-features separately and an attention mechanism
is followed to generate the corresponding importance coefficients
for each sub-features. Experiments on DCASE2021 Task4 dataset
demonstrate the effectiveness of our proposed multi-scale network.

Index Terms— sound event detection, multi-scale, channel
shuffle, split attention

1. INTRODUCTION

The purpose of sound event detection (SED) is to identify the cate-
gories of sound events and detect the onset and offset of the target
events in an audio sequence. Unlike audio classification task that
it only needs to determine the event categories, detection task also
needs to predict the temporal position of occurring events. Thus,
SED is a more difficult task. SED has drawn great attention recently
in a variety of applications, such as surveillance [1], smart cities
and homes [2], [3], as well as multimedia information retrieval [4].
There are three kinds of learning approaches in SED: fully super-
vised SED, weakly supervised SED and semi-supervised SED. Fol-
lowing the baseline of DCASE2021 Task4 , this paper only focuses
on semi-supervised SED based on mean teacher method [5].

Real-life SED is challenging since different sound events ex-
hibit different time-frequency properties. For example, "Dog" and
"Dishes" last shorter while "Running water" and "Blender" last
longer in the time domain and cover a wider frequency range. If
the model performs on a single resolution, it’s hard to deal with the
different types of sound events. Thus, how to obtain the multi-scale
features and integrate the features with inconsistent scales is a key
point in SED.

Multi-scale mechanism has drawn great attention in SED task.
Zhang et al. [6] proposed Multi-Scale Time-Frequency Attention

∗equal contribution with Xiujuan Zhu

module to extract the information at multiple resolutions. Ding et
al. [7] further proposed an multi-scale detection method based on
Hourglass network. The mechanism of Feature pyramid [8] has
proved to be useful to obtain multi-resolution features in SED [9]
, [10]. Another way to get multi-scale features is to use dilated
convolution. Li et al. [11] proposed a dilated convolution recurrent
neural network (CRNN) to verify the effectiveness of different di-
lation rates in convolution layers. Drossos et al. [12] proposed to
use dilated convolution instead of GRU to capture long temporal
context. Different from the above mentioned methods, in this pa-
per, the multi-scale is only reflected from the convolution kernels
of different sizes, it is a relatively simple structure. Su et al. [13]
proposed a channel shuffle module to promote cross-channel in-
formation communication between the high-level and low-level in-
formation. Zhang et al. [14] proposed the ResNeSt based on the
split-attention and proved its effectiveness. The group learning
mechanism in split-attention ensures the network only to learn sub-
features in adjacent channels. Wang et al. [15] also showed that the
channel features are mainly related to their adjacent channel fea-
tures while little related to the remote channel features.

Inspired the above related works, we propose a multi-scale
SED network based on split attention. The multi-scale module ex-
ploits convolution kernels of different sizes to learn the multi-scale
features in parallel, which improves its ability to recognize sound
events. Motivated by [13], the channel shuffle operation is adopted
to enable the cross-channel information flowing among the features
with different scales. Inspired by ResNeSt [14], we adopt split at-
tention module based on group convolution to separately learn sub-
features and also generate attention weights to re-weight these sub-
features.

This paper is organized as follows. We introduce the proposed
SED network in Section 2 , describe the dataset and evaluation met-
rics in Section 3 , analyze the experimental results in Section 4 , and
conclude the paper in Section 5 .

2. PROPOSED METHOD

In this section, we firstly present the overall network structure. Then
we separately introduce the proposed multi-scale module, channel
shuffle operation and split attention module.

2.1. Network Architecture

As illustrated in Figure 1 , the proposed network adopts CRNN as
the backbone architecture. It mainly consists of three parts: multi-
scale feature extraction part, bi-directional GRU (Bi-GRU) and lo-
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Figure 1: The overall architecture of the Multi-scale network based on Split Attention.

calization parts. The multi-scale feature extraction part is based on
7 residual blocks, each block followed by a pooling layer. In the
first one and the last three residual blocks, each of them consists
of one multi-scale (MS) module shown in Figure 2, and in the mid
three residual blocks, each of them consists of two MS modules.
Then a Bi-GRU is used to capture temporal information. The local-
ization part produces frame-level predictions for SED and clip-level
predictions for audio tagging (AT). Note that linear softmax [16] is
introduced as an aggregation function to produce the clip-level pre-
dictions.

2.2. Multi-scale Module

In order to effectively model time-frequency context information,
the multi-scale module exploits convolution kernels of different
sizes to extract the features of different scales.

As shown in Figure 2 , where a three-branch case is shown, each
branch used to learn one single-scale feature map . Thus, multi-
scale module can process the input feature at multiple scales in par-
allel. For a given feature map X∈ RC×H×W , it firstly undergoes
three kinds of scale transformations based on different kernel sizes
ki, thus [X1, X2, X3] are obtained. Xi∈ RC×H×W represents a
specific scale feature can be generated as:

Xi = SA(X, ki), i = 1, 2, 3 (1)

where SA denotes split attention module that is going to be de-
scribed in details in Section 2.4 . ki denotes the kernel size
used in SA module. Then a pre-processed multi-scale feature
F ′∈ R3C×H×W is obtained by concatenating the multi-scale fea-
tures Xi:

F ′ = Concat([X1, X2, X3]) (2)

where Concat means the concatenation operation along the channel
dimension.

In order to help the network learn a better multi-scale feature, a
channel shuffle operation is applied to F ′ that it improves the infor-
mation flowing among the features with different scales. A convo-
lution layer with the kernel size of 1 × 1 is followed to change the
channel numbers of output features. Thus, the final output features
F ∈ RC×H×W can be obtained by:

F = Conv1× 1(CS(F ′)) (3)

Concat
Channel  

Shuffle

X2X2

X1

X3

Conv1x1

X FF’
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Channel  
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Figure 2: Illustration of our proposed multi-scale (MS) module. SA
denotes split attention module.

Where CS denotes channel shuffle operation.

2.3. Channel Shuffle operation

In [17], channel shuffle operation can be used to improve the in-
formation flowing among the feature within different groups. In
this paper, channel shuffle operation aims to enhance the cross-
channel information communication among the features with differ-
ent scales. A channel shuffle operation can be modeled as a process
composed of “Reshape-Transpose-Reshape” operations. As shown
in Figure 2 , the channel dimension of F ′ is reshaped to (g, c),
where g is the number of groups, c = 3C/g. The channel di-
mension is further reshaped to (c, g) and then flatten back to 3C.
Through this operation, the channel information among different
features can interact with each other.

2.4. Split Attention Module

As shown in Figure 3 , inspired by group convolution (GN) [18],
SA module firstly adopts group convolution to learn different sub-
features, which represent diverse semantic features such as different
sound event patterns. Then, in order to measure the importance of
different sub-features, a set of attention weights Wi corresponding
to each sub-features are generated. This process can be abstracted
into two parts: Group, Attention.
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Figure 3: Illustration of the proposed split attention (SA) module. Blue arrow denotes group convolution operation, red arrow split operation
along the channel dimension

Group: Assuming an input feature map X∈ RC×H×W , we
firstly adopt the group convolution to learn g sub-features in dif-
ferent groups separately. As a result, the C-channel feature map
X is expanded into the rC-channel feature map X ′∈ RrC×H×W .
Then the expanded feature map X ′ is split into r branches along
the channel dimension that represented as [X1, ..., Xi..., Xr]. Xi∈
RC×H×W . iε1, 2, ..., r. The number of group g and branch r will
be discussed in the experiment.

Attention: Multiple sub-features [X1, ..., Xi..., Xr] are firstly
fused via an element-wise summation U =

∑r
i=1Xi. Then, global

average pooling is calculated to squeeze the fused feature U into a
channel-wise statistics S∈ RC×1×1:

S =
1

H ×W

H∑
i=1

W∑
j=1

U(i′, j′) (4)

Then, a simple attention mechanism with a Softmax function
is performed on the channel-wise statistics S. The attention weight
W∈ RrC×1×1 can be obtained by:

W = r − Softmax((Conv(δ(BN(Conv(S))))) (5)

Where δ means the ReLU activation function, BN the batch normal-
ization, Conv the group convolution with the kernel size of 1 × 1
and group number is g. The attention weight W∈ RrC×1×1 is then
splitted into a set of attention weights Wi∈ RC×1×1.

Finally, by applying the weights Wi to the sub-features Xi, the
output feature map of SA module Z ∈ RC×H×W is obtained by:

Z =

r∑
i=1

Si ×Xi (6)

3. EXPERIMENTS

3.1. Dataset and Experimental setup

The audio samples in the DCASE2021 Task4 dataset are 10s clips
recorded in domestic environment or synthesized to simulate a do-
mestic environment. It contains 10 kinds of sound events. Three
types data (i.e. the weakly labeled data (1578), unlabeled data
(11412) and strong labeled data (10000)) are used for training. The
ratio among them is 1:2:1 in each batch. The performance of the
proposed method is evaluated on the validation data (1168).

Following the default experiment settings of DCASE2021
Task4 baseline, we also take the log-mel energies as input extracted
with 128 mel-scale filters. The window length is 2048 with the hop
size of 256. The audio is resampled to 16kHz. The training is set
for 200 epochs using the Adam optimizer with an initial learning
rate of 0.001. A learning rate exponential warmup [19] during the
first 50 epochs is used. A detection threshold is fixed to 0.5 for
each class. The binary SED predictions are further processed with
a 7 frames median filter. For the 7 residual blocks in multi-scale
extraction part, the number of channels for each residual block is
[16, 32, 64, 128, 128, 128, 128], respectively and the pooling size
is [[1, 2], [1, 2], [2, 2], [2, 2], [1, 2], [1, 2], [1, 2]], respectively.
The dropout rate is 0.3. Note that due to the continuous pooling
operation along the frequency dimension, its receptive field along
the frequency dimension keeps increasing. Thus, in the last three
residual blocks, the kernel sizes used in MS module are set to [[3,
3], [5, 3], [7,3]], that is the kernel sizes used in time dimension keep
different values, while in frequency dimension the same.

3.2. Loss Function

The loss function for training the model is a sum of four loss compo-
nents: two binary cross entropy (BCE) losses for supervised train-
ing and two mean square error (MSE) losses for consistency train-
ing, which are combined as follows:

L(θ) =LBCE(swout, lw) + σ(λ)LMSE(swout, twout)

LBCE(ssout, ls) + σ(λ)LMSE(ssout, tsout)
(7)

Where swout, ssout denote the AT output and SED output of the
student model, respectively, twout, tsout the AT output and SED
output of the teacher model, lw and ls the weakly label and strong
label of the labeled data.

3.3. Evaluation metrics

In DCASE2021 Task4, the evaluation metrics include PSDS-
scenario1 (PSDS1), PSDS-scenario2 (PSDS2), Intersection-based
F1 (IB-F1) and Collar-based F1 (CB-F1). The PSDS1 measures
the model’s capability of detecting the onset and offset of the event
within an audio clip, and the PSDS2 measures that of avoiding con-
fusion among the event classes. More details about PSDS evalua-
tion metrics can refer to [20]. IB-F1 and CB-F1 are used as sup-
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Table 1: Ablation experiments on multi-scale (MS) mechanism with
different kernel sizes. We adopt vanilla convolution instead of SA
module in MS module of all residual block in this experiment.

Network PSDS1 PSDS2 IB-F1(%) CB-F1(%) Parameter

Base-2021 0.342 0.527 76.60 40.10 1.1M

MS-K=[3] 0.358 0.599 81.88 44.48 1.2M

MS-K=[3,5] 0.349 0.602 83.24 44.13 3.0M

MS-K=[3,5,7] 0.336 0.601 83.50 42.21 5.7M

Table 2: Ablation experiments on channel shuffle (CS) operation
based on MS-K=[3,5] system. CS-g denotes the channel shuffle
operation with g groups. g controls the fusion degree of features.

Network PSDS1 PSDS2 IB-F1 (%) CB-F1 (%)

MS-K=[3, 5] 0.349 0.602 83.20 44.13

+ CS-g=2 0.349 0.594 82.83 43.58

+ CS-g=4 0.358 0.606 82.98 45.36

plementary evaluation metrics to validate a model’s performance in
SED. For all these metrics, the value larger, the performance better.

4. RESULTS AND ANALYSIS

We separately investigate the contribution of each component to the
overall network, including the multi-scale mechanism with different
kernel sizes, the channel shuffle operation and the split attention
module. All experiments are repeated 4 times and the average result
of these experiments is reported.

Evaluations of MS mechanism
Table 1 shows the SED performance of the MS mechanism with

difference kernel sizes. MS-K=[3] means there is only one branch
with the kernel size of 3×3 in MS module, and MS-K=[3, 5] de-
notes there is two branches with the kernel sizes of 3×3 and 5×5.
MS-K=[3, 5, 7] means exactly the processing depicted in Figure 2
but no channel shuffle operation. Experimental results show that
our proposed MS network outperform the baseline of DCASE2021
Task4 [21] in terms of four evaluation metrics, demonstrating the ef-
fectiveness of the multi-scale mechanism for SED. However, com-
pared with MS-K=[3], the performance of network applying two
types of convolution kernels (MS-K=[3, 5]) or three types of con-
volution kernels (MS-K=[3, 5, 7]) has barely improved. The reason
for this phenomenon may be that the network does not handle the
features of different scales well.

Evaluations of CS operation
Table 2 lists the results of our proposed network with channel

shuffle operation. In particular, compared with the network with-
out CS operation denoted as MS-K=[3,5], the network applying CS
operation with 4 groups achieve a better performance in terms of
all evaluation metrics except IB-F1. This result demonstrates the
effectiveness of channel shuffle operation.

Evaluations of SA module
Table 3 lists the results of network applied SA module. In this

experiment, we only adopt vanilla convolution in MS module of

Table 3: Ablation experiments on split attention (SA) module based
on MS-K=[3,5] system. SA(g, r) means the number of group is g,
splitted sub-feaatures r in shuffle attention module.

Network PSDS1 PSDS2 IB-F1(%) CB-F1(%) Parameter

MS-K=[3, 5] 0.349 0.602 83.24 44.13 3.0M

+ SA(1, 1) 0.354 0.598 84.59 47.99 3.2M

+ SA(1, 2) 0.350 0.602 84.40 46.64 5.5M

+ SA(2, 1) 0.367 0.606 83.80 48.59 1.9M

+ SA(2, 2) 0.376 0.599 83.63 49.02 3.3M

+ CS-g=4 0.373 0.602 83.98 50.28 3.3M

the 1-th residual block, while SA module in MS module of the rest
residual blocks. Compared with the results of first row, we can see
that the network with split attention module achieves significantly
improvement in terms of all evaluation metrics expect PSDS2 met-
ric. The results demonstrate the effectiveness of SA module for
SED. However, Table 3 shows that three are no significant differ-
ence among networks with different SA module on PSDS2 and IB-
F1 metrics. Compared with the results between the second and
fourth row or the third fifth row, we can see that the network ap-
plying group convolution with 2 group can achieve a better perfor-
mance on PSDS1 and CB-F1 metrics than without applying group
operation. This manifests that adopting group operation to learn
sub-features is effective. Compared with the results between the
fourth and fifth row, we can find that the performance of network
splitting 2 sub-features (r=2) is better than without splitting opera-
tion in SA module. This indicates that generating attention weights
to treat the learned sub-features differently is important. From the
results of the last row, the performance of network applying chan-
nel shuffle get further improvements in terms of four metrics except
PSDS1. It also shows the effectiveness of CS operation.

5. CONCLUSION

In this paper, we propose a multi-scale SED network based on split
attention that it can deal with the short- or long- duration sound
events. Multi-scale module can learn features with multiple scales
in parallel. Specifically, channel shuffle operation is used to pro-
mote the cross-channel information flowing among the features
with different scales. Split attention module can learn the differ-
ent sub-features separately and generate attention used to weight
the importance of sub-features. A set of experiments are conducted
to verify their effective. The final results of the proposed network
outperform the baseline of DCASE2021 Task4 significantly. In our
future work, we would like to explore the issue that how to deal
with the features with different scales in SED.
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