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ABSTRACT

In this paper, we describe our multi-resolution mean teacher sys-
tems for DCASE 2021 Task 4: Sound event detection and separation
in domestic environments. Aiming to take advantage of the differ-
ent lengths and spectral characteristics of each target category, we
follow the multi-resolution feature extraction approach that we in-
troduced for last year’s edition. It is found that each one of the pro-
posed Polyphonic Sound Detection Score (PSDS) scenarios benefits
from either a higher temporal resolution or a higher frequency reso-
lution. Additionally, the combination of several time-frequency res-
olutions through model fusion is able to improve the PSDS results
in both scenarios. Furthermore, a class-wise analysis of the PSDS
metrics is provided, indicating that the detection of each event cat-
egory is optimized with different resolution points or model combi-
nations.

Index Terms— DCASE 2021, CRNN, Mean Teacher, Multi-
resolution, Model fusion, PSDS

1. INTRODUCTION

The development of competitive evaluations such as the DCASE
(Detection and Classification of Acoustic Scenes and Events) Chal-
lenges, along with the introduction of datasets like Google Au-
dioSet [1] or DESED (Domestic Environment Sound Event Detec-
tion) [2, 3], has supported the research in acoustic event detection
tasks over the recent years.

DCASE 2021 Challenge Task 4 consists in the detection and
classification of 10 different sound events. These sound events be-
long to domestic environments, and each category shows its own
temporal and spectral properties. During the DCASE 2020 Chal-
lenge, we explored the idea of employing multiple time-frequency
resolution points during the feature extraction process, aiming to ex-
ploit these differences, and finding that the combination of different
time-frequency resolutions was beneficial for the performance of a
system derived from the SED baseline, in terms of both event-based
F1 score and Polyphonic Sound Detection Score (PSDS) [4, 5, 6].

One of the advantages of our multi-resolution approach is that
it is, in principle, complementary to other improvements in the
model, such as a different topology of the neural network or ad-
ditional training data. Taking that into account, we have applied
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multi-resolution to the DCASE 2021 SED baseline system, which
features the use of mixup [7] for data augmentation, as well as a
larger synthetic subset, as main additions to the Mean Teacher [§]
convolutional recurrent neural network (CRNN) system of previous
years [9].

Our participation for DCASE 2021 Challenge is based on the
provided baseline system and follows the scenario of sound event
detection (SED) without source separation pre-processing. We
propose a multi-resolution analysis of the audio features (mel-
spectrograms) used to train the neural network, in contrast with the
single-resolution approach of the baseline.

2. DATASET

The dataset used for sound event detection in DCASE 2021 Task
4 is DESED, which is composed of real recordings, obtained from
Google AudioSet, and synthetic recordings which are generated us-
ing the Scaper library [10]. Real recordings include the Weakly-
labeled training set (1578 clips), the Unlabeled training set (14412
clips) and the Validation set (1168 clips). Additionally, the Syn-
thetic set contains 12500 strongly-labeled, synthetic clips, gener-
ated such that the event distribution is similar to that of the Valida-
tion set.

The Weakly-labeled, Unlabeled and Synthetic sets are used to
train the neural networks. 10% of the Weakly-labeled set and 20%
of the Synthetic set are reserved for validation. The DESED Vali-
dation set is used to tune hyper-parameters and perform model se-
lection.

3. PROPOSED SOLUTIONS

3.1. Multi-resolution analysis

The baseline system employs mel-spectrogram features, a two-
dimensional representation of audio signals based on the Fast
Fourier Transform (FFT) and the Mel scale. Thus, the audio seg-
ments are transformed into 2-D images that are processed through
the CRNN. The process of mel-spectrogram extraction depends on
several parameters: the sampling frequency of the audio (f), the
number of points of the FFT (/V), the number of mel filters (n.mei),
the analysis window function, and its hop and length (R, L). Given
a set of values for these parameters, a time-frequency resolution
working point is defined.

A particular time-frequency resolution can be more or less fitted
to detect a sound event category depending on its temporal and spec-
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Resolution T ., T4 BS F, Fi 4
N 1024 2048 2048 4096 4096
L 1024 1536 2048 3072 4096
R 128 192 256 384 512
Nimel 64 96 128 192 256

Table 1: FFT length (INV), window length (L), window hop (R) and
number of Mel filters (n,,.;) of the five proposed time-frequency
resolution working points. N, L, and R are reported in samples,
using a sample rate f; = 16000 Hz.

PSDS DTC GTC asr CTTC act €max
Scenario 1 0.7 0.7 1.0 0.0 - 100
Scenario 2 0.1 0.1 1.0 0.3 0.5 100

Table 2: Parameter configuration for the PSDS scenarios. DTC =
Detection Tolerance Criterion. GTC = Ground Truth intersection
Criterion. avg = Cost of instability across classes. CTTC = Cross-
Trigger Tolerance Criterion. e = Cost of Cross Triggers. €max
= Maximum False Positive Rate.

tral characteristics, which vary for each target class. For example,
considering the Synthetic training set, some event categories have
an average duration shorter than 2 seconds (Alarm bell/ringing, Cat,
Dishes, Dog, and Speech), while other classes are more than 8 sec-
onds long in average (Electric shaver/toothbrush, Frying, or Vac-
uum cleaner).

Using different mel-spectrogram configurations, we defined
five different time-frequency resolution working points. For each
one of them, we replicated the baseline, modifying it to handle the
corresponding time-frequency resolution. Finally, we combined the
frame-level estimation of the class posterior probabilities provided
by each resolution, obtaining a multi-resolution system.

The reference for time-frequency resolution is the set of param-
eters used by the baseline system for the feature extraction process,
which will be referred as B.S. We maintain the sampling frequency
at fs = 16000 Hz and the use of a Hamming window. The rest
of the parameters (N, L, R, nme;) are modified to increase time or
frequency resolution in each case. The resulting resolution points
(Ty+, T4, BS, Fy, and Fy ) are described in Table 1.

3.2. Model fusion

For each event category i, a binary classification is performed be-
tween classes 6; 0, which means “event ¢ not detected”, and 6; 1,
meaning “event ¢ detected”. This classification task is considered
independent of other event categories, and we will call it a detec-
tion task.

Given an audio clip, a CRNN detector generates a different
score sequence for each detection task %, as a time series with a
frame rate that is determined by the resolution point employed. The
fusion of K different detectors consists in a combination of their
sequences (sgl), e SEK) ). This combination is performed as a late
integration, using the sigmoid outputs of each CRNN as score se-
quences. By convention, higher scores indicate a stronger support to
the presence of event ¢ (6;,1). The final score sequence is obtained
as the frame-wise average of the K score sequences.
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Figure 1: Polyphonic Sound Detection Score (PSDS) curves over
the DESED Validation set of the single resolution Fly ., F, BS,
T, and T’ + used to obtain the combined systems submitted to the
evaluation.

System  Resolutions PSDS1 PSDS2 Fi(%)
3res Fi,BS, T4+ 0.380 0.589 45.0
3res-F F,,,F.,BS 0.361 0.589 45.1
3res-T  BS, T, T, 0.386 0.578 46.4
4res Fi4,F4,BS, T4 0.372 0.600 45.1
Sres Fit,Fy,BS, Ty, Tyy 0.386 0.600 46.4

Table 3: PSDS and F} results of multi-resolution systems over the
DESED Validation set.

System  Resolutions PSDS1 PSDS2 Fi(%)
3res F.,BS, T4 0.343 0.571 42.6
3res-T  BS, T, T,y 0.363 0.574 43.1
4res Fiy,Fy,BS, Ty 0.345 0.571 422
Sres F++,F+,BS,T+,T++ 0.361 0.577 427
Challenge Baseline 0.315 0.547 37.3

Table 4: PSDS and F} results of multi-resolution systems over the
DESED 2021 Evaluation set.
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PSDS 1 Fir F, BS T, T,
Alarm bell/ringing 0.4464+0.009 0.512+0.022 0.5564+0.015 0.561+£0.012  0.56740.007
Blender 0.694+0.021 0.627+0.008 0.6774+0.018 0.652+0.029 0.67140.028
Cat 0.3784+0.020 0.414+0.004 0.4114+0.011  0.439+0.004 0.40140.024
Dishes 0.1074+0.008  0.132+0.010 0.176+0.010  0.172+0.039  0.12140.020
Dog 0.242+0.003  0.2724+0.008 0.30640.010  0.316+£0.005 0.295+0.012
Electric shaver/toothbrush  0.78740.027  0.798+0.021 0.7514+0.057 0.765+0.025 0.68740.050
Frying 0.5824+0.018 0.613+0.013  0.6354+0.022  0.639+0.021 0.60740.023
Running water 0.4814+0.026  0.510£0.006  0.5404+0.014  0.548+0.020 0.55340.013
Speech 0.5814+0.006 0.603+0.007 0.631+0.004 0.634+0.009 0.62040.006
Vacuum cleaner 0.732+0.041  0.7694+0.085 0.771£0.092 0.770£0.086  0.790+0.068
Overall PSDS 1 0.290+0.004  0.3194+0.005 0.35240.005 0.358+0.015 0.331£0.005
PSDS 2 Fot F, BS T, T,

Alarm bell/ringing 0.855+0.003  0.8524+0.007 0.8364+0.004 0.842+0.004 0.814+0.011
Blender 0.851+0.006 0.783+0.016 0.79940.014 0.782+0.014 0.79140.016
Cat 0.7174+0.011  0.705+£0.009 0.6614+0.015 0.665+0.014 0.6224+0.016
Dishes 0.3944+-0.022 0.376+£0.019 0.3884+0.013  0.374£0.065 0.38940.021
Dog 0.666+0.014  0.672+0.017 0.6614+0.007 0.643+0.017 0.6044+0.017
Electric shaver/toothbrush  0.938+0.020 0.913+0.017 0.8854+0.016 0.9124+0.015 0.851£0.011
Frying 0.771£0.018  0.780+£0.009  0.7954+0.019  0.795+0.012 0.75940.018
Running water 0.7144+0.011  0.714£0.014 0.749+0.012  0.750+0.015  0.755+0.015
Speech 0.830+0.007 0.8214+0.007 0.834+0.007 0.822+0.009  0.813+0.006
Vacuum cleaner 0.8924+0.006  0.902+0.011 0.8864+0.013  0.879+0.014 0.8734+0.018
Overall PSDS 2 0.5574+0.009 0.544+0.013  0.5534+0.007 0.544+0.029 0.53440.012

| Fy BS T, T4
Macro Fi (%) 33.9440.77 38.26+0.77 42.58+0.90 42.20+1.19 41.86+0.79

Table 5: PSDS (scenarios 1 and 2) results for each event category and overall PSDS and F scores of single-resolution systems over the
DESED Validation set. Mean and standard deviations are computed across 5 trainings of each system with different random initializations.

PSDS 1 PSDS 2

3res  3res-T 4res Sres S5xBS | 3res 3res-T 4res S5res 5xBS
Alarm bell/ringing 0.572  0.584 0.558 0.577 0.576 | 0.858  0.855 0.870 0.870 0.852
Blender 0.724  0.744 0.746 0.768 0.727 | 0.840 0.838 0.853 0.856 0.841
Cat 0.455 0.472 0.435 0.457 0.428 | 0.701 0.667 0.727 0.712  0.681
Dishes 0.202  0.200 0.197 0.214 0206 | 0415 0.402 0.435 0.436 0419
Dog 0.319  0.327 0.312 0.324 0326 | 0.693 0.681 0.701 0.700 0.689
Electric shaver/toothb. | 0.740 0.695 0.739 0.714  0.783 | 0.902 0.909 0.918 0916 0.917
Frying 0.677  0.682 0.668 0.674 0.678 | 0.841 0.836 0.829 0.833  0.832
Running water 0.567 0.574 0.562 0.569 0.560 | 0.775 0.780 0.771 0.775 0.772
Speech 0.661  0.673 0.659 0.666 0.658 | 0.851  0.857 0.852 0.855 0.850
Vacuum cleaner 0.893 0.885 0.877 0.890 0.815 | 0.933 0.923 0.932 0.932 0.921
Global PSDS 0.380  0.386 0.372 0.386 0.380 | 0.589 0.578 0.600 0.600 0.585
Macro Iy (%) 44.97 46.42 45.13 46.42 45.84 | 4497 46.42 45.13 4642 45.84

Table 6: PSDS (scenarios 1 and 2) results of combined systems for each event category and overall PSDS and F; scores over the DESED
Validation set. 3res, 3res-T, 4res and Sres are the multi-resolution combinations that were submitted to the challenge, whereas 5xBS is a
single-resolution combination of five models trained with the BS resolution point.
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4. EXPERIMENTS AND RESULTS

Our experiments are based upon the 2021 baseline system' released
by the DCASE Team. The only modification applied to the structure
of the CRNN is the adaptation of the max-pooling layers of the
convolutional stage to the number of mel-filters employed by each
resolution point.

In the first place, we trained the baseline system using each one
of the resolution points for feature extraction, leading to five single-
resolution systems. Afterwards, following the method described in
Section 3.2, several sets of resolution points were combined, ob-
taining multi-resolution systems.

PSDS scores are computed applying 50 different thresholds
(linearly distributed from 0.01 to 0.99) to the combined score se-
quences, obtaining binary time series which are then smoothed by
means of a median filter.

We report the results in terms of PSDS [11] and event-based,
macro-averaged Fi-score [12]. In every case, scores are generated
employing the Teacher models obtained from the Mean Teacher
training.

To allow the evaluation of SED performance in different con-
ditions, the challenge organization proposes two PSDS configura-
tions. While the PSDS scenario 1 (PSDS 1) gives special impor-
tance to the precise temporal localization of events, the PSDS sce-
nario 2 (PSDS 2) focuses on the correct detection of the event cate-
gories. The parameters that define these scenarios are described in
Table 2.

The PSDS curves obtained with each of the feature resolution
points described in 3.1 over the DESED Validation set, as well as
their AUC (Area Under Curve) metrics, are shown in Figure 1. Ac-
cording to the results, it seems that a higher time resolution is bene-
ficial for PSDS 1, while PSDS 2 is optimized using finer frequency
resolutions. This behaviour was expected, taking into account that
PSDS 1 is designed to focus on the temporal precision of the sys-
tems.

Aiming to include information from different resolution points
in the SED system, networks trained with different feature resolu-
tions have been combined as described in Section 3.2, obtaining the
PSDS and macro F results shown in Table 3. The model combi-
nations include the Baseline resolution (B)S) along with some of
the resolution points we have proposed. Combining models trained
with different feature resolutions outperforms the baseline and other
single-resolution models in both PSDS scenarios, as well as in terms
of Fi-score.

The best result for the first PSDS scenario over the Validation
set is achieved by the 3res-T and the 5res combinations, both of
them achieving an area under curve (AUC) of 0.386. On the other
hand, the best results for the PSDS 2 scenario are obtained with
4res and Sres, both of them reaching AUCs of 0.600. Thus, al-
though each scenario is optimized by combining either higher time
resolutions or higher frequency resolutions, the fusion of the five
resolution points (Sres) seems to optimize both of them at the same
time.

The 3res, 3res-T, 4res, and Sres combinations were submitted
to the challenge, and their results are presented in Table 4. The
best PSDS 1 over the 2021 Evaluation set is achieved by the 3res-T
system (0.363), whereas the highest PSDS 2 is obtained by the Sres
combination (0.577). Moreover, the performance of the submitted
systems over the 2021 Evaluation set is very similar to that observed
over the Validation set.

Uhttps://github.com/DCASE-REPO/DESED _task
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4.1. Class-wise results

In previous editions of the DCASE Challenge Task 4, SED systems
were evaluated by means of the event-based macro Fi score. Such
metric is an average of the event-based F scores for each target cat-
egory, thus the scores for each individual class were usually high-
lighted in the results of the systems. On the other hand, whereas
PSDS overcomes several limitations of the F; metric [13], the per-
formance for each category is not usually described when reporting
the results. For this reason, and considering that the detection of
each event class is an independent task with an impact on the global
results, we have computed the class-wise PSDS scores in terms of
the Area Under Curve (AUC).

The class-wise PSDS results of the single-resolution systems
are presented in Table 5. In each scenario, the best performing sys-
tem in terms of global PSDS provides the largest AUC for several
classes: in the first scenario, resolution 77 holds the best results
for Cat, Dog and Frying, whereas in the second scenario resolution
F, | obtains the highest scores for Alarm bell/ringing, Blender,
Cat, Dishes and Electric shaver/toothbrush. However, the rest of
the event categories obtain better results with other resolutions, in-
dicating that, as expected, the optimal resolution point depends not
only on the PSDS settings but also on the characteristics of the tar-
get class.

Table 6 shows the PSDS results of combined systems. These
systems include the multi-resolution fusions that have been sub-
mitted to the challenge (3res, 3res-T, 4res, and Sres), as well as
a combination of five different instances of the BS model (5xBS)
which aims to contrast the performance of a single-resolution com-
bination against the multi-resolution fusions. In most of the event
categories, the largest AUC is obtained with a multi-resolution com-
bination rather than with the single-resolution combination 5xBS,
being Electric shaver/toothbrush the exception in PSDS 1. Addi-
tionally, the 5xBS achieves better global performance than the in-
dividual models. Therefore, it seems that the average fusion pro-
vides an improvement in both PSDS scenarios even when combin-
ing systems trained with the same resolution point. However, such
improvement is larger when the systems to be combined have been
trained with different resolutions.

5. CONCLUSIONS

In this work, we present the results of our participation in DCASE
2021 Challenge Task 4. Built upon the baseline provided by the or-
ganization, our proposed system combines different time-frequency
resolution points of the mel-spectrogram features by averaging the
output sequences of several CRNN detectors.

With the described approach, we have been able to outperform
the baseline system in both PSDS scenarios and macro F} score
over the DESED Validation and 2021 Evaluation sets. Moreover,
the results indicate that certain resolutions and their combinations
allow to optimize either the PSDS 1 (higher time resolutions) or
PSDS 2 scenario (higher frequency resolutions), and that model fu-
sion is more beneficial when different resolutions are combined.

Furthermore, the class-wise analysis of PSDS shows that the
adequacy of each resolution point for sound event detection is re-
lated not only to the evaluation settings but also to the target cate-
gory.
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