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ABSTRACT 

Our team has built an acoustic event classifier solely using short-

time features. Signals were first de-noised by a log minimum 

square error (logMMSE) procedure. Then, Mel-frequency 

cepstral coefficients (MFCCs) extracted from the de-noised sig-

nal at every 20 ms were used to train two classifiers based on 

support vector machine (SVMs) and neural networks (NN), re-

spectively. Optimal parameters for the classifiers were exhaust-

ively searched to maximize the frame-wise recognition accuracy 

in cross validation. Frame-wise recognition rates of 93.0% and 

91.8% were thus obtained from the SVM and NN, respectively, 

for the home events (and 86.2% and 85.7% respectively for the 

residential events). To process the evaluation data, the same 

signal processing procedures were applied so both classifiers 

produce their classification result for every frame. Whenever 

SVM and NN gives different answers, we resort to the confusion 

matrices obtained during the supervised learning phase so a final 

answer could be produced based on a maximal a posteriori (MAP) 

principle. Finally, a heuristic smoothing procedure was applied 

to the jointly decided recognition results so the event onsets and 

offsets could be determined.i 

Index Terms— Support Vector Machines, Neural Networks, 

Noise Reduction, Decision Fusion 

 

1. SYSTEM OVERVIEW 

We first converted the audio files provided by DCASE 2016 from 

stereo to mono, then used the log minimum mean square error 

(logMMSE)[9] method to reduce the background noise. After-

wards, we extracted two sets of short-time features: 20 Mel-

Frequency Cepstrum Coefficients (MFCC) plus their 1st and 2nd 

derivatives, and 72 bandpass-filtered output energy based on a 

time domain loudness model (TDLM)[15]. To prepare for super-

vised learning, we excluded so-called “silent frames” if the total 

energy of a frame was below a dynamically determined threshold. 

After silence removal, acoustically active frames were separated 

into the group of “target sounds” (consisting of 11 categories for 

the home database and 7 categories for the residential database) 

versus the group of “background sounds” based on their labels. A 

neural network was trained to distinguish background sounds 

from the target sounds.  

                                                           
i Y.W.L. thanks the Ministry of Science and Technology of Tai-

wan for supporting this research. 

 

   For the target sounds, 30 frames from each class were randomly 

selected to be included in the testing database, and all the  

remaining frames were utilized for training and cross validating 

SVM and NN-based event classifiers.  

    After the classifiers were trained individually, they are con-

nected as shown in the block diagram in Fig. 1 to recognize 

sound events from raw audio files. Details of each block are 

described next. 

 

2. FURTHER DESCRIPTION OF METHODS 

This section describes further details of the signal processing and 

machine learning methods. 

 

2.1  Signal pre-processing 
Previous studies showed that ambient background noise deterio-

rates the recognition performance of a classifier in an event de-

tection task, with approximately 10% every 5 dB [8]. Therefore, 

noise reduction (NR) processing is necessary to improve the 

recognition rates. In our system, we adopted the logMMSE [9] 

NR algorithm to remove the ambient background noises for both 

training and testing sounds. The logMMSE algorithm is a statis-

tical-model-based NR method that aims to minimize the mean-

square error between the clean and estimated magnitude spectra. 

Previous experiment results indicated that the logMMSE NR 

 
Fig. 1: System diagram 
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approach reduces the residual noise, and most importantly, with-

out affecting the speech signals itself, that is, without introducing 

much speech distortion [9,10]. For more details technologies of 

logMMSE please refer to [9,10]. 

 

2.2  MFCC settings 
When extracting MFCC features, we set the following parame-

ters: window length = 0.04 seconds, hop length = 0.02 seconds, 

number of Mel-filters 40, minimum and maximum frequency 0 

and 22050 Hz for Mel-filters, number of cepstral coefficients 

after discrete cosine transform = 20. After we obtained the 

MFCCs, we also computed their delta and acceleration coeffi-

cients. Then we remove the first coefficient, which represents the 

sum of log energy. Although the total energy is not considered 

informative in the classification task, we did remove the so-

called silent frames based on frame energy.  

 

2.3 Silence removing method based on frame energy 

Silence removal was performed based on frame energy. For each 

testing file, we first computed the mean of the frame energy se-

quence E1=mean{E(i)}. Then, we applied a moving average filter 

of length 25 to {E(i)}, resulting a filtered sequence E2(i), i being 

the frame index. Whether a frame was counted as silence or not 

would depend on the ratios between E(i), E2(i) and E1; several 

weighting parameters were tuned to reach the best performance 

according to the author’s subjective evaluation. These parameters 

are denoted as w1, w2, and w3 respectively and their definition are 

given as follows: first, frames satisfying E(i) < w1E1 would be 

considered-silent and would not be passed on further; then, the 

remaining frames with E(i) > w2E1 or E(i) > w3 E2(i) would be 

regarded as not silent. The main reason to base the decision on 

moving average filtered frame energy is because it helps detect-

ing transient events, and the majority of the target events in task3 

are transient. The first weighted mean energy w1E1 is used to 

exclude the inaudible noise to be regarded as events, and the 

second weighted mean energy w2E1 is used to ensure those long 

term events could be correctly kept for subsequent model train-

ing. Parameters w1, w2, and w3 were set to 0.05, 0.5, and 0.5, 

respectively.  

 

2.4  Building the background model 
A binary background vs. targeted sound classifier was built using 

a neural network. Details are described in Sec. 2.6. 

 

2.5  Training the SVMs 
A support vector machine is a model that seeks to split two clas-

ses by a hyperplane in a certain feature space. Here, we adopted 

“libsvm”[16] to develop our classifiers. For each class of events, 

a binary SVM was built to detect whether a frame belongs to this 

class or not, based on short-time features. Therefore, 11 and 7 

binary classifiers were trained for the home and residential data-

bases, respectively. Before the training started, 30 frames were 

randomly selected for each targeted class to be included in the 

testing dataset, and the rest of frames were used to train and vali-

date the SVMs. For each binary classifier, the training set also 

included “negative data” that were evenly fetched from the all 

the others (10 or 6) target classes. We set the number of points in 

the training dataset and the testing dataset to be 1:1. Empirically, 

we found that the radial basis function-based kernel worked well 

for the current task, and the parameters for the kernel functions, 

including an exponent coefficient gamma and a fault tolerance 

factor, were fined-tuned by grid searching so as to obtain the 

highest accuracy during cross validation. 

    The libsvm toolkit also calculates a conditional probability 

(regarded as “confidence” in Fig. 1) when performing classifica-

tion [17]. Technically, this can be achieved by turning on a pa-

rameter “-b” during execution. The final SVM-based label was 

produced by picking the maximal confidence level among all 

binary classifiers. All confidence values were also saved for 

event label smoothing, to be described in Sec. 2.8. 

 

2.6  Training the deep neural network (DNN) 
An artificial neural network (ANN) model is a mathematical 

model that mimics biological neural network (NN) structures and 

functions to enable a machine system to execute classification or 

regression tasks. More recently, the multiple layers NN, called 

deep NN (DNN), has shown well performance in a wide variety 

of tasks [1-5]. The concept of DNN involves using a high num-

ber of hidden layers to strengthen the classification or regression 

capability, using the current output layer as the input of the next 

hidden layer. The details of the DNN technologies can refer to 

[1,6]. 

    First of all, we based on acoustic scenes of home to train a 

DNN binary classifier model to identify the background or target 

sounds in home condition. Next, we used the acoustic sounds of 

home and residential area, obtained from the TUT sound events 

2016 acoustic dataset, to train the other two DNN models. One 

DNN model is used to distinguish the sound events in home, and 

the other is used to identify the sound events in residential. In 

these three DNN models training, the MFCC features were used. 

In addition, the DNN structures of these three models were set as 

a three-layer with 500 hidden neurons, which has been demon-

strated to achieve the best performance for the current task. The 

details performance of these three DNN models is summarized in 

Table 1.  

 

2.7  Combining the decisions made by SVM and NN 

SVM and NN-based event classifiers inevitably gave different 

results from time to time. When this happen, we relied on a max-

imal a priori (MAP) hypothesis-testing rule to determine whether 

SVM or NN was right. Let i and j be the label determined by 

SVM and NN, respectively, and assume that 𝑖 ≠ 𝑗. The follow-

ing decision had to be made, 

 

𝑃(𝐻1|𝑖, 𝑗) 
>
<

 𝑃(𝐻2|𝑖, 𝑗), (1) 

where H1 and H2 denote the hypotheses that the ground truth 

being i or j, respectively, and the inequality is basically a com-

parison between two posterior probabilities given the present 

judgments (𝑖, 𝑗) from both classifiers. Using the Bayes rule, the 

comparison could be shown to be equivalent to the following 

decision to be made, 

 

𝑃(𝐻1)𝑃SVM(𝑖|𝐻1)𝑃NN(𝑗|𝐻1) 

                     
>
<

  𝑃(𝐻2)𝑃SVM(𝑖|𝐻2)𝑃NN(𝑗|𝐻2), 
(2) 

 

where 𝑃SVM(𝑙|𝐻𝑘) denotes the conditional probability that the 

SVM classifier determines the label is l while the ground truth is  

𝐻𝑘 (and 𝑃NN is similarly defined), and 𝑃(𝐻𝑘)’s denote the prior 

probabilities. We estimated 𝑃SVM(𝑙|𝐻𝑘)  and 𝑃NN(𝑚|𝐻𝑘)  by 

calculating the confusion matrices during the training phase. 
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Note that derivation from (1) to (2) is valid only if the two classi-

fiers are assumed to give independent results. 

 

2.8  Rules for determining event onsets and offsets 

After performing the decision fusion, the sequence of event la-

bels were smoothed according to their run lengths. Based on the 

training data, we categorized the target events into two different 

kinds: transient or sustaining. The sustaining kind included rus-

tling, people walking, washing dishes, and water tap running 

from the home database, and car passing by, people speaking, 

people walking, and wind blowing from the residential database. 

All the other events were regarded as transient. 

    A minimum event gap (MEG) of 0.5 sec was defined so that 

intermittent labels could be merged if they are separated by dura-

tion shorter than the MEG. For events belonging to the transient 

kind, if multiple event classes simultaneously claim for a seg-

ment of the event sequence, we assign the segment to the class 

that possesses the highest total confidence. Finally, we check 

whether the length of the event falls between the minimum and 

maximum duration as it has ever occurred in the training set. If 

not, the event would be discarded. For events belonging to the 

sustaining kind, an event label would be kept as long as its dura-

tion is above the minimal length in the training set. 

    These post-processing rules were designed based on a few 

assumptions: first, transient events rarely overlap. Secondly, 

sustaining events can overlap with other events. Finally, the 

length of any event should roughly match with what was deter-

mined by human annotators. 

3. CLASSIFICATION PERFORMANCE 

Since the event labels for the evaluation dataset are not available 

yet, here we only summarize the classification performance using 

the training set. Results reported here were all obtained in cross 

validation.  

 

3.1  Background vs. Target (BvT) classification 

The frame-wise BvT recognition rates, as the network depth in-

creases, are listed Table 1.  Note that BvT classification was only 

performed for the home database because labeled non-target 

sound events were too scarce in the residential database. Conse-

quently, we decided not to build a BvT classifier for residential 

sounds. 

     From the results in Table 1, we note that for the task of binary 

decisions on background and target events, a one layer ANN can 

already achieve satisfactory performance while DNNs with more 

layers do not yield further improvements. Similar results have 

been reported in the previous studies [18] that when dealing with 

a simple classification task, NNs with deep structures might not 

attain additional gains when compared to an ANN with a single 

hidden layer.  

 

Table 1. BvT classification accuracy using different configura-

tions of NN. Results obtained from the home database. 500 is the 

number of nodes in each layer (not including the input and the 

output layer), and the depth varied from 1 to 5.  

 500×1 500×2 500×3 500×4 500×5 

Home (binary) 75.9% 73.4% 70.8% 72.8% 72.7% 

 

  

 
Fig. 2: The confusion matrix of SVM-based event classification 

for the home events during the training phase.  
 

 
Fig. 3: Similar to Fig. 2, for the residential events. 

 

3.2  SVM-based event classification 

Confusion matrices for SVM-based event classification are given 

in Fig. 2 and 3 for home and residential database, respectively. 

Here, the SVM parameters, gamma and fault tolerance for every 

binary classifier, have been extensively searched and only the 

best results are shown.  

 

3.3  NN-based event classification 

A suitable configuration of DNN (i.e., units and layers) can pro-

vide optimal recognitions performance. In most deep learning 

studies, the general conclusion is that increasing the depth of the 

NN always helps in performance either for pattern classification, 

encoding and noise reduction tasks [11-14]. Similarly, we in-

crease the depth of the network to test the recognition perfor-

mance in our pilot study. More specifically, we carried out exper-

iments by setting the number of hidden units to 500, and in-

creased the depth from one to five. Table 2 show the experi-

mental results for the recognitions of home (11 categories) and 

residential (7 categories) sound events, respectively. The results 

showed that the 500×3 (i.e., 500 units and three layers) configura-

tion of DNN model can provide best performance in our pilot 
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study. More specifically, on average, the best performance of 

DNN model provided 91.8% and 85.7% for home and residential 

testing conditions. 

 

 

Table 2. The results of different configurations of DNN in home 

and residential testing conditions. 

 500×1 500×2 500×3 500×4 500×5 

Home 90.0% 91.2% 91.8% 88.8% 85.5% 

Residential area 84.8% 85.2% 85.7% 80.5% 79.5% 

 

 

 

 
Fig. 4: The confusion matrix of DNN-based event classification 

for the home events during the training phase. 

 

 
Fig 5: Similar to Fig. 4, for residential events. 

 

4. PERFORMANCE 

The performance of evaluation datasets is given by dCASE. It’s 

calculated by F1-score (F1) and error rate (ER). Table 3 shows 

overall system performance. Table 4 includes home and residen-

tial area segment-based performance respectively.  

 

 

Table 3. Overall system performance evaluated by ER and F1 of 

segment-based and event-based.  

 Segment-based Event-based 

 ER F1 ER F1 

Overall 0.9287 34.5% 2.4283 8.1% 

 

 

Table 4.  Performance in home and residential area evaluated by 

segment-based ER and F1 

 Segment-based 

 ER F1 

Home 1.2249 17% 

Residential area 1.7328 14.9% 

 

5. DISCUSSIONS 

From Table 2, we can note that an ANNs with two and three 

layers achieve better performance than ANN with a single hid-

den layer, suggesting that a deep structure may possess better 

detection capability than a shallow structure. Meanwhile, we 

note that when there are four and five hidden layers, the perfor-

mance of ANN decreases, showing that the training data may be 

insufficient to accurately train the parameters in a DNN with too 

many layers.  

    When comparing the SVM and DNN confusion matrices as 

shown in Figs. 2 to 5, these two classifiers provide their ad-

vantages in different events. More specifically, DNN can more 

accurately detect on drawer, object impact, water tap running, 

bird singing, children shouting, people speaking, people walking 

and wind blowing events while less accurately detect (object) 

rustling, (object) snapping, cupboard, cutlery, dishes, glass jin-

gling, people walking, washing dishes, (object) banging, car 

passing by events when compared with SVM. The results show 

that these two types of classifiers perform differently and provide 

complimentary information, which can be integrated using Eqs. 

(1) and (2). 

      

6. INTENDED FUTURE WORK 

The present confusion matrices were not obtained by 4-fold, file-

wise cross validation as recommended by the dCASE organizer. 

Therefore, we admit that the recognition accuracy might be over 

optimistic in this regard. Nevertheless, we believe that our per-

formance for the evaluation set could be improved by replacing 

the confusion matrices with more realistic ones at the MAP deci-

sion fusion step (Sec. 2.7). 

    By participating in this competition, we have also conducted a 

pilot study which used a multi-task training strategy to build the 
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DNN classifier by integrating heterogeneous features, namely 

MFCC and of TDLM [15]. The results show that the DNN mod-

els with multi-task training can improve the performance than 

original DNN classifier with 2% and 1.5% absolute detection rate 

improvements in BvT and outdoor test conditions, respectively. 

Due to the limited space, we did not include this part of results in 

this paper. In the future, we will conduct detailed investigations 

on finding optimal strategies to combine acoustic features with 

complimentary information to further improve the performance of 

DNN classifier for event detection. Meanwhile, we note that the 

amount of training data significantly affect the achievable detec-

tion performance. In the future, we will also explore suitable 

methods, such as transfer learning [7] or pretraining techniques 

[19], to effectively utilize the available training data to effectively 

train the DNN models.   
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