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ABSTRACT

This technical report describes our contribution to the scene clas-
sification task of the 2016 edition of the IEEE AASP Challenge
for Detection and Classification of Acoustic Scenes and Events
(DCASE). Our computational pipeline consists of a gammatone
scattering transform, logarithmically compressed and coupled with
a per-frame linear support vector machine. At test time, frame-level
labels are aggregated over the whole recording by majority vote.
During the training phase, we propose a novel data augmentation
technique, where left and right channels are mixed at different pro-
portions to introduce invariance to sound direction in the training
data.

Index Terms— scattering transform, wavelets, auditory scene
classification, orientation invariance, support vector machine

1. SYSTEM OUTLINE

The system used for the scene classification task is illustrated in Fig-
ure ??. Each recording is decomposed using a time scattering trans-
form, which provides a signal representation that is locally invari-
ant to time-shifting and stable to time-warping deformation. Since
small changes in timing have little relevance to the auditory scene of
a particular recording, this invariance reduces the variability of the
data without necessarily hampering discriminability. The averaging
scale of the scattering transform is fixed to be 740 ms. In order
to account for the varying orders of magnitude across frequencies,
we then apply a logarithmic compression to the data. Each record-
ing is thus represented as a sequence of logarithmically compressed
scattering vectors.

Due to the stereophonic nature of the recordings, we augment
the training data by constructing monophonic signals with different
mixing proportions, effectively providing invariance to sound direc-
tion. At the training stage, a linear support vector machine (SVM)
classifier is trained using the sequences obtained from the training
data. For each recording in the testing set, the classifier is applied to
all scattering vectors in the recording, yielding a class for each vec-
tor. The class of the entire recording is then determined by majority
vote. Evaluating this system on the standard four train-test splits in
the development data, we obtain an average accuracy of 79.4%.

∗This work is supported by the ERC InvariantClass grant 320959. The
source code to reproduce figures and experiments is freely available at
http://www.github.com/lostanlen/dcase2016.
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Figure 1: The scattering classification system proposed for the
scene classification challenge. During the training phase, the data
is augmented by mixing the left and right channels at various pro-
portions. The log-scattering vectors are then computed and used to
train a linear SVM. This SVM is then used to classify the sequence
of log-scattering vectors for each test recording. The resulting se-
quence of labels is reduced to a single recording label through ma-
jority vote.

2. SCATTERING REPRESENTATION

The scattering transform was introduced by S. Mallat as a signal
representation that is invariant to translations and stable to defor-
mation [?]. It has had success in classifying images [?], audio [?],
and biomedical signals [?]. For audio signals, translation corre-
sponds to time-shifting, while deforming a signal warps it in time.
Both of these transformations have little to no effect on the semantic
content of an audio signal, so reducing their influence enables us to
train more accurate classifiers using limited training data. A brief
review of the scattering transform is provided in this section.

First, for a signal x, let us define its Fourier transform x̂ by

x̂(ω) =

∫
R
x(u)e−iωu du. (1)

Given an analytic filter ψ with Fourier transform ψ̂ concentrated
around the dimensionless frequency 1, we define a wavelet filter
bank {ψλ}λ>0 by dilating ψ, called the mother wavelet, to obtain

ψλ(t) = λψ(λt). (2)
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Figure 2: Gammatone wavelets ψ(t) in the time domain with qual-
ity factors (a) Q = 4 and (b) Q = 1. Blue and red oscillations
represent the real and imaginary parts. The orange envelope repre-
sents the complex modulus.

The analyticity of ψ forces its Fourier transform to be zero for neg-
ative frequencies. The wavelet filters ψλ are also analytic and since
ψ̂ is centered around frequency 1, ψ̂λ is centered around λ.

A function ψ that fulfills our conditions is the pseudo-analytic
Gammatone wavelet, illustrated in Figure ??. Its form is given ex-
plicitly by

ψ(t) =
(
(n− 1)tn−2 + itn−1) e−(b+i)t 1[0,∞)(t), (3)

where the bandwidth parameter b is roughly proportional to 2−1/Q

and Q is the desired quality factor, i.e. the ratio of the center fre-
quency to the half-maximum bandwidth in the Fourier domain. To
begin with, we shall take Q = 4.

Given a signal x, we decompose it using the wavelet filter bank
to obtain

x ∗ ψλ1(t) for λ1 > 0, (4)

known as the wavelet decomposition of x. We have denoted the
standard convolution operator by ∗. The dilation structure of the
wavelet filter bank means that we do not need to sample λ1 contin-
uously. Rather, it is sufficient to sample λ1 as 2j/Q, where Q is the
quality factor of the mother wavelet ψ. This means that we sample
uniformly in log-frequency log λ1.

The wavelet decomposition itself is very sensitive to time-
shifting and time-warping, which can be partially mitigated by tak-
ing the complex modulus. The result is known as the wavelet scalo-
gram and we denote it by

x1(t, log λ1) = |x ∗ ψλ1(t)|. (5)

The scalogram provides a useful representation of the time-
frequency content of a signal. At a given point (t, log λ1), it gives
the intensity of x at time t and log-frequency log λ11. However,
it does not have the desired invariance and stability properties. To
achieve this, we average the scalogram in time using a lowpass filter
φT (t) of duration T to give

S1x(t, log λ1) = x1(·, log λ1) ∗ φT (t)
= |x ∗ ψλ1 | ∗ φT (t). (6)

In our configuration φT is given by a Gabor filter centered at fre-
quency 0 with the desired bandwidth T in time. The coefficients
S1x are known as first-order time scattering coefficients and are
comparable to the commonly used mel-frequency spectrogram co-
efficients [?].

The averaging by φT discards fine-scale temporal structure in
the scalogram x1. To recover this, we calculate a second wavelet
decomposition on the scalogram along the time axis. Instead of the

quality factor Q = 4 used in the first decomposition, we now use
Q = 1. As before, we compute the complex modulus and obtain

x2(t, log λ1, log λ2) = x1(·, log λ1) ∗ ψλ2(t)

= | |x ∗ ψλ1 | ∗ ψλ2(t)|. (7)

This second-order wavelet scalogram describes the modulation
structure of the frequency band centered at log λ1 of the first-order
scalogram x1. It is therefore closely related to modulation spectro-
grams [?, ?], but are defined using wavelet decompositions instead
of short-time Fourier transforms.

Again, to obtain invariance, the second-order scalogram x2 is
averaged in time using the lowpass filter φT to give

S2x(t, log λ1, log λ2) = x2(·, log λ1, log λ2) ∗ φT (t)
= | |x ∗ ψλ1 | ∗ ψλ2 | ∗ φT (t), (8)

which are known as second-order time scattering coefficients. Like
modulation spectrograms, these coefficients provide information on
the modulation structure of the signal x at log-frequency log λ1,
but do so in a stable manner due to the wavelet construction. In this
way, they are more closely related to constant-Q averaged modula-
tion spectrograms [?, ?]. We note that the above procedure can be
continued for third- and higher-order scattering coefficients, but that
for most applications, first- and second-order coefficients suffice.

Concatenating all the first-order scattering coefficients into one
vector

S1x(t) = {S1x(t, log λ1)}λ1>0, (9)

and doing the same for the second-order coefficients

S2x(t) = {S2x(t, log λ1, log λ2}λ1>0,λ2>0, (10)

we can combine all of them into one scattering vector at time t

Sx(t) = {S1x(t), S2x(t)}. (11)

It is important here to remark that, although the above formulas
cover continuous domains in t, log λ1, and log λ2, these variables
can all be sampled discretely without great loss of information. As
mentioned earlier, log λ1 and log λ2 can be sampled uniformly with
a step proportional to 1/Q. In addition, the lowpass nature of the
scalogram x1 in time ensures that many coefficients in x2 will be
negligible for large values of log λ2. As a result, these can be safely
excluded from the transform. Finally, the lowpass filtering by φT
ensures that we can sample the final scattering vector Sx along mul-
tiples of T/4 in time.

3. SCATTERING POST-PROCESSING

Instead of feeding the raw scattering vectors into the SVM classi-
fier, we process them to facilitate model building by reducing their
dynamic range and standardizing their variability. Specifically, we
first compute the log-scattering coefficients by taking the logarithm
of each value in the scattering vector to get

logS1x(t, log λ1) = log (|x ∗ ψλ1 | ∗ φT (t)) (12)

in the first order and

logS2x(t, log λ1, log λ2) = log (| |x ∗ ψλ1 | ∗ ψλ2 | ∗ φT (t))
(13)
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in the second order. These are combined across all log-frequencies
log λ1 and log λ2 as before to yield a log-scattering vector
logSx(t).

The log-scattering coefficients are better suited for audio clas-
sification since audio amplitudes can vary across several orders of
magnitude without significantly changing the content of the signal.
This is often characterized as the Weber-Fechner law in psychoa-
coustics.

In addition, we diagonally standardize the coefficients to have
mean zero and unit variance. To do this for our train-test splits,
we calculate the mean and variance for each scattering coefficient
across our training data and then use this to standardize both the
training and testing data for the current split. This helps improve
the conditioning of the SVM training since all values are in the same
numerical range.

4. DATA AUGMENTATION

Most acoustic scene datasets are recorded according to a binaural
protocol, i.e. with a pair of in-ear microphones [?]. This protocol
provides a realistic description of the spatial auditory environment,
as it reproduces the natural listening conditions of humans. In par-
ticular, the interaural level difference (ILD) between the left and
right channels depends on the direction of each sound source that
make up the scene with respect to the listener [?]. Yet, since the mi-
crophone location and direction vary across instances of the same
class, the signal representation should be invariant to these parame-
ters.

In order to achieve invariance to changes in direction, averag-
ing the left and right channels into a monophonic signal is by far
the most widespread approach. If these are denoted by xL and xR,
respectively, we would thus have

xM(t) =
1

2
xL(t) +

1

2
xR(t), (14)

where xM is the mixed signal. However, it favors the center of the
scene while attenuating lateral cues. Indeed, if xL is zero and xR
contains the entire signal, the resulting mixed signal xM will have a
lower amplitude.

To create the desired invariance without overemphasizing the
central direction, we calculate multiple combinations of the left and
right channels into the monophonic signal xα using the formula

xα(t) =
1 + α

2
xL(t) +

1− α
2

xR(t), (15)

where α determines the mixing between the channels. Note that
taking α = 0 gives us the center mixed signal xM described above.

In following experiments, we set α to −1, 1
2

, 0, + 1
2

, and +1.
This is a form of data augmentation since 5 monophonic signals are
obtained from each binaural recording in the training set, increasing
its size. At test time, only the center combination (α = 0) is used
to classify the recording.

5. CLASSIFIER

Given the recordings in a training set, we compute their scattering
vectors as described in Section ??. Each recording being 30 s long
and the averaging window set at T = 740 ms, this results in 160
scattering vectors per recording, since Sx is sampled at intervals
of size T/4 = 186 ms. From these, log-scattering vectors logSx

Scene Baseline Temporal scattering

beach 74.6± 18.9 83.5± 7.1
bus 58.2± 18.3 88.8± 11.4
cafe/restaurant 85.1± 10.8 64.5± 8.3
car 69.1± 20.8 94.9± 6.1
city center 89.6± 9.2 91.7± 9.4
forest path 72.4± 23.8 93.8± 7.8
grocery store 74.1± 13.7 90.9± 6.9
home 78.1± 17.7 56.2± 23.9
library 65.1± 23.3 82.0± 13.0
metro station 85.2± 15.6 96.0± 2.3
office 90.8± 16.0 87.5± 21.7
park 25.6± 11.0 75.4± 7.4
residential area 75.1± 19.4 44.2± 15.0
train 34.1± 7.2 58.3± 10.0
tram 85.4± 13.9 83.7± 12.2

Average 70.8± 2.6 79.4± 3.0

Table 1: Classification results obtained through cross-validation on
the development data for the DCASE 2016 scene classification chal-
lenge. The mean and standard deviation of the percentage correct
in each class is provided along with the average across classes.

are computed as outlined in Section ?? and their mean and variance
are computed across all recordings in the training set. These values
are then used to standardize the log-scattering vectors to have mean
zero and unit variance.

These log-scattering vectors are then fed, along with the class
label of the recording they are extracted from, into the training algo-
rithm for a linear SVM. An SVM is a binary linear classifier which
is trained by finding the hyperplane that best separates two classes
while minimizing training error [?]. In our system, we used the LI-
BLINEAR library [?]. Since the SVM is formulated as a binary
classifier, a one-versus-all scheme is used to generalize its results to
a multi-class setting.

To train the SVM, a cost parameter C is used to determine
the trade-off between penalizing errors on the training data and the
maximization of discriminatory margin. In our case, we saw very
little difference in performance when varying this parameter, which
suggests that there is little conflict between these two objectives and
that the data is therefore close to linearly separable. As a result, we
set C equal to 1.

Once the SVM is trained, we feed it log-scattering vectors from
the testing set. As discussed in Section ??, these are first standard-
ized by the mean and variance derived from the training set. Again,
a 30 s-recording in the testing set yields 160 log-scattering vectors,
which means that the SVM returns 160 different class labels for
a single recording. To obtain a label for the entire recording, we
perform a majority vote among all the labels corresponding to the
individual log-scattering vectors. This type of approach to aggre-
gating representation vectors along a time series is known as a late
integration scheme [?].

6. NUMERICAL RESULTS

To evaluate the time scattering system proposed above, we apply it
to the development data provided with the DCASE 2016 scene clas-
sification challenge. This dataset is divided into four folds, which



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

can be used to form train-test splits by training on three folds and
testing on the remaining fold. This cross-validation procedure pro-
vides an estimate of the mean classification accuracy along with its
variability due to differing training sets.

The results for the entire system is provided in Table ??. It is
to be noted that while performance is quite good for most classes,
certain classes (“cafe/restaurant”, “residential area”, and “train”)
perform very poorly. These scenes are relatively quiet, with few
characteristic sounds present, which could explain the difficulty in
classifying them well. The exact cause for this difference in perfor-
mance merits further study.

Despite these problems, the system provides a significant
improvement over the baseline system, which consists of mel-
frequency cepstral coefficients (MFCCs) modeled using Gaussian
mixture models (GMMs) [?]. Since the scattering representation
takes into account the modulation structure of the scalogram in ad-
dition to the average spectral envelope captured by MFCCs, this im-
provement in performance is to be expected. We expect that further
increases in performance can be achieved for this task by introduc-
ing more sophisticated extensions of the scattering transform such
as the joint time-frequency scattering transform [?].
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