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ABSTRACT 

This submission to the sub-task acoustic scene classification of 

the IEEE DCASE 2016 Challenge: Acoustic scene classification 

is based on a feature extraction module based on the concatena-

tion of monaural and binaural features. Monaural features are 

based on Mel Frequency Cepstrums summarized using recur-

rence quantification analysis. Binaural features are based on the 

extraction of inter-aural differences (level and time) and the 

coherence between the two channel stereo recordings. These 

features are used in conjunction with a support vector-machine 

for the classification of the acoustic sound scenes. In this short 

paper the impact of different features is analyzed. 

Index Terms—mfcc, support vector machine, sound 

scene, machine learning, binaural 

1. INTRODUCTION 

A typical auditory scene contains multiple sources that change 

their locations. Moreover different acoustic scenes differ on the 

way the sound sources propagate. Some sources may reflect in 

walls from a room and some others are propagated in almost free 

field in an open space. The spectral and temporal monaural char-

acteristics of the sound sources as well as the binaural perception 

of these sound sources by the human auditory system can be used 

to recognize a sound environment [1]. Therefore an automatic 

classification system may be able to use both, monaural and 

binaural features to improve its accuracy. 

 

This short paper describes an acoustic scene classification system 

that uses both monaural and binaural features and proposes to 

concatenate them to improve the classification accuracy. 

 

The selection of appropriate acoustic features is essential for 

successful classification. Typical monaural features for acoustic 

scene classification are the well known mel-frequency cepstral 

coefficients (MFCCs) and derived amplitude modulation [1], [2]. 

Moreover, it is known that binaural cues contribute to auditory 

scene analysis [1]. It has been shown that monaural features are 

not much affected by spatial configuration of sound sources, and 

can therefore complement binaural features.  More concrete, 

inter-aural time difference (ITD), inter-aural level difference 

(ILD) and inter-aural coherence (IC) cues are proposed as fea-

tures in the classification system [3]. 

 

A common practice in audio classification tasks is the integration 

of frame-level features over some period of time that can be used  

 

 

 

as input to state-of-the art algorithms for classification. Typically, 

the frame level features are summarized using the mean and the 

standard deviation. This approach reduces to much information 

about the temporal evolution and distribution of the features. For 

this reason Recurrence Quantification Analysis (RQA) was pro-

posed to improve the temporal representation of frame level 

features leading to improvements in acoustic scene classification 

accuracy [4].  

 

The system proposed in this short paper uses RQA and binaural 

features. These features are combined to train a support vector-

machine (SVM) classifier. Figure 1 gives an overview of the 

whole system. The following subsections give more details on 

each of the processing blocks of the diagram. 

2. METHODS 

 

Figure 1: Block diagram of the scene classification system 

2.1. Monaural Features 

We extract MFCCs from the audio recordings. Our implementa-

tion uses the rastamat library [5].The stereo soundtracks formed 

by the left and right channels (𝑥𝐿 and 𝑥𝑅) sampled at 44.1 kHz 

are mixed by averaging each sample between the left and right 

channel and processed using a short-time Fourier magnitude 

spectrum calculated over a 40 ms window with a hop-size of 20 

ms.  The mean and standard deviation of the frame level features 

is computed. The mean and the standard deviation of the delta 

MFCC features are concatenated. 

2.1.1. Recurrence Quantification Analysis 

RQA is a set of techniques that have been used to classify audi-

tory scenes and sound events [4]. The basic idea is to quantify 

patterns that emerge in recurrence plots. A time series, such as 
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MFCC features, are used to compute a distance matrix of the 

series. The distance matrix can be obtained using the cosine 

distance. Next the distance matrix is thresholded to a certain 

radius r. The radius represents the maximum distance of two 

observations of the series that will still be considered as belong-

ing to the same state of the system. The resulting matrix contains 

ones for each pair of frame indices that are close together, and 

zeros for the rest. The main intuition is that diagonal lines repre-

sent periodicities in the signal, i.e. repeated (or quasi-repeated, 

depending on the chosen radius) sequences of frames, while 

vertical lines represent stationarities, i.e. the system remains in 

the same state. The main diagonal, or Line Of Identity (LOI) is 

obviously not counted. From this idea, several metrics have been 

developed that quantify the amount and length of lines of con-

tiguous points in the matrix. 

 

Because the time series obtained from sound scenes are relative-

ly long, a windowed version was proposed [4]. This consists in 

computing the recurrence plots from overlapping windows of fix 

size. This makes it possible to analyze the temporal evolution of 

the features. The window length was set to 40 MFCC frames, 

which represent 400 ms of audio. The radius parameter was 

fixed to 0.03. Other parameters are the minimum line lengths for 

considering diagonal and vertical lines which were set to a min-

imum of 2 points. 

2.2. Binaural Features  

Binaural features may be useful to distinguish between different 

sound environments. As an example, the class train contains 

sound recordings inside the train and therefore the main sound 

belongs to the train itself. On the other hand the class metro 

station is composed by sounds of trains passing by. Although the 

temporal and spectral characteristics of the train sounds are 

similar on both classes, the balances between the left and right 

channels may be different.  

 

The spatial feature extractor uses a model of binaural hearing [3] 

to estimate inter-aural time (ITD), the inter-aural level differ-

ences (ILD) and the inter-aural coherence (IC).  The next para-

graph provides a short description on how these features are 

computed, a more extensive description can be found in [3]. 

 

A gammatone filterbank is applied on the left 𝑥𝐿 and right 𝑥𝑅  ear 

signals to simulate the frequency analysis performed by the 

basilar membrane. The output of this analysis results in critical 

bands that are inserted in a model of neural transduction. The 

model adds internal noise to the critical bands to simulate the 

limited accuracy of the auditory system.  After some processing 

the resulting nerve firing densities at the corresponding left and 

right ear critical bands are denoted 𝑦𝐿 and 𝑦𝑅.  

 

The ITD and IC are estimated from the normalized cross-

correlation function. Given 𝑦𝐿 and 𝑦𝑅  for a specific center fre-

quency 𝑓𝑐 , at each time index 𝑛, the normalized cross-correlation 

function is computed as follows: 

𝛽(𝑛, 𝑚) =  
𝑎12(𝑛, 𝑚)

√𝑎11(𝑛, 𝑚)𝑎22(𝑛, 𝑚)
, 

where  

𝑎12(𝑛, 𝑚) = 𝛼𝑦𝐿(𝑛 − 𝑚𝑎𝑥{𝑚, 0})𝑦𝑅(𝑛 − max{−𝑚, 0})
+ (1 − 𝛼)𝑎12(𝑛 − 1, 𝑚), 

𝑎11(𝑛, 𝑚) = 𝛼𝑦𝐿(𝑛 − 𝑚𝑎𝑥{𝑚, 0})𝑦𝐿(𝑛 − max{−𝑚, 0})
+ (1 − 𝛼)𝑎11(𝑛 − 1, 𝑚), 

𝑎22(𝑛, 𝑚) = 𝛼𝑦𝑅(𝑛 − 𝑚𝑎𝑥{𝑚, 0})𝑦𝑅(𝑛 − max{−𝑚, 0})
+ (1 − 𝛼)𝑎22(𝑛 − 1, 𝑚), 

 

and 𝛼 𝜖 [0,1] determines the time constant of the exponentially 

decaying estimation window: 

𝑇 =  
1

𝛼𝑓𝑠
, 

where 𝑓𝑠 is the sampling frequency. The ITD (in samples) is 

estimated as follows: 

 

𝜏(𝑛) =  argmax
𝑚

{𝛽(𝑛, 𝑚)}, 

𝑐12 = 𝑚𝑎𝑥{𝛽(𝑛, 𝑚)}. 
 

This estimate describes the coherence between the left and right 

ear input signals. In principle, it has a range [0,1], where 1 oc-

curs when 𝑦𝐿and 𝑦𝑅 are perfectly coherent. 

 

The ILD is computed as 

∆𝐿 = 10𝑙𝑜𝑔10 (
𝐿2(𝑛, 𝜏(𝑛))

𝐿1(𝑛, 𝜏(𝑛))
), 

 

where, 

 

𝐿1(𝑛, 𝑚) = 𝛼𝑦𝐿
2(𝑛 − max(𝑚, 0) + (1 − 𝛼)𝐿1(𝑛 − 1, 𝑚)), 

𝐿2(𝑛, 𝑚) = 𝛼𝑦𝑅
2(𝑛 − max(−𝑚, 0) + (1 − 𝛼)𝐿2(𝑛 − 1, 𝑚)), 

 

Finally the cue triplets ∆𝐿(𝑛), 𝜏(𝑛), 𝑐12(𝑛)  are obtained. The 

ILDs and ITDs where only estimated when the coherence be-

tween  𝑦𝐿 and 𝑦𝑅 exceeded a threshold set to 0.4. 

 

For each sound track we extracted the triples (ITD, ILD and IC) 

at 250 Hz and at 2000 Hz. The mean and the standard deviation 

were then computed and concatenated to the monaural features. 

 

As an example we show the estimated ITD, ILD and IC features 

over time at frequencies 250 Hz and 2000 Hz for a single record-

ing of the class beach and the class office (Figure 2). 

 

Figure 2: Example of the estimated ILD (Top), ITD (cen-

ter) and IC (bottom) for the class Beach (left) and the 

class office (right) over time. 
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From Figure 2 it can be observed that ILDs at a higher frequency 

(2000 Hz) allow for an easier discrimination between the two 

classes than at low frequencies. For the ITDs however, the low 

frequencies seem to provide more discriminative cues. For the 

IC feature the differences between classes are quite small at both 

frequencies. 

 

Figure 3 presents the mean and the standard deviation over time 

for the ILD, ITD and IC features estimated at frequencies 250 

Hz and 2000 Hz for each class of the DCASE challenge 2016 

dataset. 

 

Figure 3: Mean and standard deviation for the ILD, ITD, 

and IC for each class of the DCASE 2016 challenge da-

taset. 

2.2.1. Recurrence Quantification Analysis on Binaural Fea-

tures 

In the same manners as using monaural features, the bin-

aural triplets (ILD, ITD and IC) at different frequencies 

can be stacked to form an array of binaural features in each 

time instant. RQA can then be used to analyze the time 

series of binaural features. RQA for binaural triplets (ILD, 

ITD and IC) at two frequencies 250 Hz and 200 Hz were 

estimated. The binaural triplets were averaged over 0.43 

seconds before applying RQA. The same RQA parameters 

as in the monaural case were used. Figure 4 presents the 

recurrent plots based on binaural features for two envi-

ronmental  sounds  (Urban Park and Restaurant). 
 

 

Figure 4: Recurrence plots of two classes (Urban Park 

and Restaurant) based on binaural features (ILD, ITD and 

IC) at 250 Hz and 2000 Hz. 

2.3. Classifier 

2.3.1. Support Vector Machine (SVM) 

For classification we used a supervised learning method based 

on a standard SVM using an RBF kernel. In our method we used 

a linear distance between the examples to create the gram matrix  

 

𝐾(𝑓, 𝑔) = 𝑒−𝛾𝐷(𝑓,𝑔). 

 

We used the so called slack SVM that allows a trade-off between 

imperfect separation training examples and smoothness of the 

classification boundary, controlled by a constant C that we vary 

in the range 101, 102, ..., 1010. Both tunable parameters γ and C 

were chosen to maximize the classification accuracy over a held-

out set of validation data. After training an independent SVM 

model for each concept, we apply the classifiers to summarize 

features derived from the audio files.  The SVM was implement-

ed using the libSVM library [6]. 
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2.4. Databases 

The DCASE 2016 [7] datasets for environmental sound detec-

tion was used. The DCASE 2106 dataset was recorded using a 

Soundman OKM II Klassik/studio A3, electret binaural micro-

phone and a Roland Edirol R-09 wave recorder using 44.1 kHz 

sampling rate and 24 bit resolution. The microphones are specif-

ically made to look like headphones, being worn in the ears. As 

an effect of this, the recorded audio is very similar to the sound 

that reaches the human auditory system of the person wearing 

the equipment. Given this recording system some acoustic 

scenes may differ from each other based on their binaural char-

acteristics.  

2.5. Baseline System 

The baseline system consists of a classical mel frequency 

cepstral coefficient (MFCC) and a support vector machine 

(SVM) based classifier. MFCCs were calculated for all audio 

using 40 ms frames with Hamming window and 50% overlap 

and 40 mel bands. The number of cepstral coefficients was set to 

40 coefficients including the 0th order coefficient. Delta and 

acceleration coefficients were also calculated using a window 

length of 9 frames, resulting in a frame-based feature vector of 

dimension 160. Each acoustic scene was used to train a SVM as 

described in section 2.3.  

3. RESULTS 

We evaluated our approaches (our baseline and the new devel-

opments based on monaural, monaural + RQA, RQA and binau-

ral features and RQA based on monaural and binaural features) 

using the development and the evaluation dataset provided by 

the IEEE DCASE 2016 challenge organizers. The development 

dataset consists of 78 segments of 30 seconds of audio for each 

acoustic scene.  The development dataset was divided into a fur 

fold cross-validation setup. At each fold, SVM classifiers for 

each concept were trained on 80% of the development data, 

tuned on 20% and then tested on the 20% of development da-

taset not used for training. Classification performance was 

measured using accuracy: the number of correctly classified 

segments among the total number of test segments. 

 

Figure 5 presents the accuracy for each class using monaural 

features (40 mean MFCC + 40 std MFCC + 40 mean delta 

MFCC +40 std delta MFCC ) + monaural RQA features (11 

features) + binaural features (mean and std for each triplet at two 

250 Hz and 2000 Hz resulting in 12 features) + RQA binaural 

features (11 RQA for 250 Hz and 11 RQA for 2000 Hz). The 

analysis resulted in a set 205 features for each sound scene.  

Figure 5 presents the accuracy results obtained for each class. 

The mean accuracy of our pilot experiment after 4 folds was 

75.96% for the development dataset.  

 

The accuracy of our baseline system (MFCCs + SVM) was 

71.32%. Note that the accuracy of the DCASE 2016 baseline 

system, based on MFCC features and a GMM classifier was 72.5 

%. 

 

The evaluation dataset was released shortly before submission. 

The results of the system here presented based on 

MFCC+monaural RQA+binaural features+RQA binaural ob-

tained an accuracy of 81% whereas the DCASE 2016 baseline 

system obtained an accuracy of  77.2%. 

 

 

 

Figure 5: Accuracy for each class using the development 

dataset. The mean accuracy using the evaluation dataset 

was 75.96%. 

4. CONCLUSIONS  

This work has presented a method to classify sound scenes based 

on monaural and binaural features combined with RQA and a 

SVM classifier. The combination of monaural and binaural 

features improves the classification accuracy with respect to a 

baseline based solely on monaural features.  The results here 

presented demonstrate that adding RQA with binaural features 

improve the accuracy of a sound scene classifier based on mon-

aural features and a SVM by around 4 % based on the DCASe 

2016 development dataset.  
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