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ABSTRACT

This report describes our submissions to Task2 and Task3 of the
DCASE 2016 challenge [1]. The systems aim at dealing with the
detection of overlapping audio events in continuous streams, where
the detectors are based on random decision forests. The proposed
forests are jointly trained for classification and regression simulta-
neously. Initially, the training is classification-oriented to encourage
the trees to select discriminative features from overlapping mixtures
to separate positive audio segments from the negative ones. The
regression phase is then carried out to let the positive audio seg-
ments vote for the event onsets and offsets, and therefore model the
temporal structure of audio events. One random decision forest is
specifically trained for each event category of interest. Experimen-
tal results on the development data show that our systems signifi-
cantly outperform the baseline on the Task2 evaluation while they
are inferior to the baseline in the Task3 evaluation.

Index Terms— audio event detection, overlapping, poly-
phonic, regression, classification, discriminative decision forests

1. INTRODUCTION

Audio event detection is an important problem of computational
auditory scene analysis [2, 3]. It addresses the problem of deter-
mining where in time an event is happening in an audio stream and
the identity of that event. Therefore, it enables many novel applica-
tions such as ambient assisted living [4], security surveillance [5] to
name a few.

Besides two common detection approaches, i.e., detection-by-
classification [6, 7, 8] and automatic speech recognition (ASR)
based frameworks [9, 10], a regression-based approach using ran-
dom decision forests has been proposed in our previous works
[11, 12, 13, 14]. Unlike the common approaches, the regression-
based one accomplishes the detection task by letting the audio seg-
ments vote for the positions of event onsets and offsets. As a results,
this inherently models the temporal structure of audio events [15].
This approach has been reported significantly more favorable per-
formance compared to those of the common ones [12]. More inter-
estingly, due to the monotonicity of its detection function [13], early
event detection without losing detection accuracy can be guaranteed
[13] and multi-channel fusion becomes straightforward [14].

Regarding detection of overlapping events, it has been shown
in the literature that handling event overlap, e.g., multiple events
that happen simultaneously in time, is very challenging. In intu-
ition, when two events overlaps each other, their frequency contents
are mixed up. Three different strategies have been proposed to deal
with this. The first one aims at entangling the mixtures into the indi-

vidual constituents using blind source separation [16, 17], the sec-
ond is based on direct classification [8, 18, 19], and the third relies
on the selection of local spectral information. While the regression-
forest detectors are superior for nonoverlapping event detection,
they are not supposed to handle well event overlaps. It is due to
the fact that they are trained on only positive examples and know
nothing about the negative ones [11, 12]. In order to overcome this,
we additionally equip them with a feature selection capability. We
propose discriminative decision forest detectors which are trained
using both positive and negative examples. The forests are trained to
deal with both classification and regression tasks at the same time.
The classification-oriented training enforces the forests to select the
discriminative features from polyphonic mixtures to separate posi-
tive examples from negative ones. The regression-oriented training
then follows up to model temporal structures of audio events as in
regular regression forests [11, 12].

2. DISCRIMINATIVE DECISION FOREST REGRESSION

We describe in this section the framework of discriminative decision
forests that are jointly trained for the classification and regression
tasks. This framework will be employed in our submissions for
Task2 and Task3 of the DCASE 2016 challenge.

2.1. Joint classification-regression training algorithm

Given segmented audio events obtained from annotated training
data, we label the event instances of the target category as positive
examples and others (i.e. other event categories and background) as
negative ones. The training examples are decomposed into the set of
interleaved audio segments S : {sn = [xn, c,dn];n = 1 . . . |S|}
where xn ∈ RM is the feature vector for the segment n, and M is
the dimensionality. c ∈ {0, 1} denotes the class label inherited from
the event instance that the segment stems from. dn = [d+n , d

−
n ] ∈

R2
+ is the distance vector where d+n and d−n denote the distances

from n to the first segment (i.e. the onset) and the last segment
(i.e. the offset) inclusive of the corresponding event respectively
[11, 12]. Especially, for the negative examples, their distance vec-
tors are not used during training and, therefore, can be ignored.

Suppose that we learn a forest model of T trees. To construct a
single decision tree, we randomly sample and use a subset from S.
Different from the regression-only forests in [11, 12, 15, 14], a split
node of the tree performs either classification (therefore the name
“discriminative”) or regression tasks, for example by randomly de-
ciding which task will be performed. The splitting function is de-
fined as

tr,q,τ (x) =

{
1, if xr − xq > τ
0, otherwise. (1)



Here, xr and xq denote the values of x at a random selected feature
channels r, q ∈ {1, . . . ,M}, respectively. τ is a random threshold
generated in the range of xr − xq . Opposed to the single feature
test function in [11, 12], the test function in (1) is expected to better
explore the internal structure of the feature space.

We further denote S to be the set of audio segments that arrived
at the current split node. Evaluating a test t on S will split it into
two subsets SR and SL where SR = {x ∈ S

∣∣t(x) = 1} and
SL = {x ∈ S

∣∣t(x) = 0}. For the classification task, the quality of
a test is defined by the information gain I(·) given by

I(t) = H(S)−
(
|SR|
|S| H(SR) +

|SL|
|S| H(SL)

)
(2)

where | · | denotes the size of a set and H(·) measures the purity of
a set in terms of class labels. We use the entropy for H(·):

H(S) = −
∑

c∈{0,1}

P (c) logP (c). (3)

For regression, the quality of a test is measured by the total distance
variation:

V (t) = VR + VL, (4)

where

VR =
∑
i

∥∥di − d̄
∥∥2

2
for xi ∈ SR, (5)

VL =
∑
i

∥∥di − d̄
∥∥2

2
for xi ∈ SL. (6)

In (5) and (6), d̄ denotes the mean distance vector of the set. Note
that only positive examples are involved when training for regres-
sion.

We randomly generate a large number of tests from which an
optimal one is then adopted to maximize I(·) or minimize V (·) de-
pending on whether the classification or regression training is being
performed. Eventually, SR and SL are further directed to the right
and left child node, respectively. The process is repeated recur-
sively until either a maximum depth Dmax of the tree is reached or
a minimum number Nmin of audio segments are left. A leaf node is
then created. The class label distribution of the audio segments that
arrived at the leaf is then modeled as

P (positive) =
|{x ∈ S|c = 1}|

|S| , (7)

P (negative) =
|{x ∈ S|c = 0}|

|S| . (8)

Furthermore, the onset and offset distances of the positive audio
segments that arrived at the leaf are modeled as Gaussian distribu-
tions:

N+(d; d̄+,Σ+) =
1√

2πΣ+
exp

(
− (d− d̄+)2

2Σ+

)
, (9)

N−(d; d̄−,Σ−) =
1√

2πΣ−
exp

(
− (d− d̄−)2

2Σ−

)
. (10)

Here, (d̄+,Σ+) and (d̄−,Σ−), respectively, denote the means and
variances of onset and offset distances of the positive audio seg-
ments. Eventually, the saved models P (positive), P (negative),

N+(d; d̄+,Σ+), and N−(d; d̄−,Σ−) are calibrated using the
whole training data set.

The algorithm is repeated to construct all trees of the forest. Al-
though a tree can be trained by alternatively performing classifica-
tion and regression, we employ a steering parameter γ. At the level
of a tree less than or equal γ, the training is classification-oriented.
On contrary, at the level of a tree greater than γ, the training is tar-
geted for regression.

2.2. Testing

Given a test audio signal, we want to estimate the onset and off-
set time of a target event. We input a segment xm at the index m
into one tree of the trained forest. At every split node, the stored
binary test is evaluated, directing it to the right or left child until
ending up at a leaf node. The models P (positive), P (negative),
N+(d; d̄+,Σ+), and N−(d; d̄−,Σ−) stored at the leaf are re-
trieved. We then obtain estimates for the onset and offset positions
at a time index n as

p+(n
∣∣xm, d̄+,Σ+) = P (positive|xm)N+(n;m− d̄+,Σ+),

(11)

p−(n
∣∣xm, d̄−,Σ−) = P (positive|xm)N−(n;m+ d̄−,Σ−).

(12)

Moreover, we only allow an audio segment xm with a classifi-
cation probability P (positive|xm) ≥ α to contribute on the estima-
tion in (11) and (12). The determination of the threshold α will be
explained later. The estimation by the forest is computed by aver-
aging over all trees i:

p+(n
∣∣xm) =

1

T

T∑
i=1

p+(n
∣∣xm, d̄+i ,Σ

+
i ), (13)

p−(n
∣∣xm) =

1

T

T∑
i=1

p−(n
∣∣xm, d̄−i ,Σ

−
i ). (14)

The estimates by all segments are accumulated to yield the confi-
dence scores for the onset and offset positions of the target event
as

f+(n) =
∑
m

p+(n
∣∣xm), (15)

f−(n) =
∑
m

p−(n
∣∣xm). (16)

A threshold β is finally applied on the confidence scores f+(n)
and f−(n) as in [12, 14] to identify the event onsets and offsets. As
long as we find a pair of maximum confidence scores above the de-
tection threshold β in chronological order, a maximum onset score
followed by the maximum offset score, a target event is considered
detected.

3. TASK 2: EVENT DETECTION IN SYNTHETIC DATA

This task focuses on event detection of overlapping office sounds
in synthetic mixtures. The training data is given by 20 isolated
event instances for each of eleven target categories. The develop-
ment data is created by adding the given isolated events into con-
tinuous recordings of background noise at various signal-to-noise
(SNR) levels (i.e. -6, 0, and 6 dB), event density conditions, and
polyphony. The test data is created with a similar manner but with
unseen isolated events.



Table 1: Task2 overall performance on the development data and test data.

Development set Test set
Segment-based Event-based Segment-based Event-based

ER F1 ER F1 ER F1 ER F1
Our system 0.1420 92.8 0.1835 90.5 0.5901 64.8 1.0123 39.8

Baseline 0.7859 41.6 - 30.3 0.8933 37.0 1.6852 24.2

3.1. Experiments on the development data

3.1.1. Training data creation

Firstly, isolated training examples were scaled relatively to the
background noise in the development data to result in three replica
corresponding to -6, 0, and 6 dB. We also created artificial overlap-
ping events from the isolated ones. Each positive event instance was
mixed with randomly selected negative event instances, one from
each negative event category, at a random position with an overlap
of at least 50% of its duration. These overlapping instances were
labeled as positive examples. In addition, we created negative over-
lapping instances by mixing a negative event instance with another
randomly selected negative one. The artificial mixing procedure
was performed for each SNR level.

3.1.2. Low-level features

The training and development data were downsampled to 16 kHz.
The signals were then decomposed into 100 ms segments with an
overlap of 90 ms. We extracted 64 Gammatone ceptral coefficients
[20] in the frequency range of 50-8000 Hz to represent each seg-
ment. For the development data, we conducted background noise
subtraction [21] before feature extraction. Furthermore, since the
training data does not contain background noise, we randomly se-
lected a number of background segments (equal to the number of
positive audio segment) from the development data to add them into
the training set.

3.1.3. Parameters

We trained a discriminative decision forest for each event category
using the algorithm presented in Section 2. The number of trees was
set to ten. A random subset containing 50% training audio segments
was used for training. During training, 20,000 binary tests were
generated for a split node. In addition, we set the maximum depth
to Dmax = 12 and minimum number of segments at leaf nodes to
Nmin = 20. Furthermore, we opted the steering parameter γ = 9.

The confidence scores outputted by the forests were normalized
by dividing by the maximum scores in development data. The pos-
itive classification probability threshold α and the detection thresh-
old β were found by a grid search to minimize cross-validation
segment-based total error rate (ER). The threshold α was searched
in the range of [0, 1] with a step size of 0.05 and β was searched in
the range of [0, 1] with a step size of 0.025.

3.1.4. Experimental results

The detection performance of our system is shown in Table 1. Over-
all, a segment-based ER (the main evaluation metric for the task) of

Table 2: Task2 segment-based class-wise performance on test data.

Event Type Our system Baseline
ER F1 ER F1

Clearing throat 0.6506 62.7 0.8956 49.4
Coughing 0.8491 47.2 1.0561 6.2
Door knock 0.6595 73.1 0.8674 63.1
Door slam 1.3092 15.6 2.9855 15.1
Drawer 0.7433 62.1 0.9833 3.3
Keyboard 0.4599 79.5 0.9100 22.4
Keys (put on table) 0.7956 40.5 0.6400 62.7
Human laughter 0.7199 64.1 1.3193 40.8
Page turning 0.5929 62.9 1.0032 2.5
Phone ringing 0.4136 77.8 0.7956 40.6
Speech 0.5626 71.7 0.7163 59.3
Average 0.7051 59.7 1.1066 33.2

0.1420 is obtained by our system on the development which outper-
forms the baseline by a large margin of 0.6439 absolute. Further-
more, significant improvements can be seen on other metrics.

3.2. The final submission system and results

The detection system was finally evaluated on the test data to pro-
duce the final results for submission. However, since the develop-
ment data is made of training isolated events, there exists a signif-
icant mismatch between the confidence scores obtained by the de-
velopment data and the test data. Specifically, the confidence scores
obtained by the development data are much higher than those of the
test data most likely due to overfitting. We mitigated this effect by
average filtering the scores with a window size of eleven audio seg-
ments (equivalent to 100 ms). Finally, we rejected detected events
that have durations longer than thrice of the maximum event dura-
tion in the training data.

As shown in Tables 1 and 2, our system achieves an overall
and class-wise segment-based ERs of 0.5901 and 0.7051, respec-
tively, on the test data. These results outruns those of the baseline
by 0.3032 and 0.4015 absolute.

The significant performance drop on the test data compared to
that on the development data is likely due to overfitting given the
fact that the development recordings are composed of the training
examples.

4. TASK 3: EVENT DETECTION IN REAL LIFE DATA

This task focuses on audio event detection in real life data [1, 22].
The data consists of recordings from two acoustic scenes: home



Table 3: Task3 overall performance on development and test data.

Dev. set Test set
Segment-based Segment-based Event-based
ER F1 ER F1 ER F1

Our system 0.8304 31.6 0.9644 23.9 1.0634 1.5

Baseline 0.9100 23.7 0.8773 34.3 1.7303 6.3

(indoor) and residential area (outdoor). Eleven and seven event
categories are targeted for the home and residential area datasets,
respectively. Each dataset is partitioned into four folds for devel-
opment. The overall detection over all folds will be reported. Our
experiments were repeated for each fold and each acoustic scene.

4.1. Training data and low-level features

We extracted segmented positive audio event instances from the an-
notated data. The rest outside the duration of positive instances were
considered as negative examples. The signals were first downsam-
pled to 16 kHz and then decomposed into 50 ms segments with an
overlap of 40 ms. We extracted 64 Gammatone ceptral coefficients
[20] in the frequency range of 20-8000 Hz to represent a segment.

4.2. Parameters

The parameters used to train the decision forests are the same as
those in the Task 2 system, except for the following difference.
We employed a thresholding scheme called ignorance threshold.
Based on an observation for some event classes that the error rates
ER > 1.0. That is, for these classes, doing nothing is better some-
thing. This fact can be easily introduced into our system to guaran-
tee the maximum error rate of 1.0 by simply allowing the detection
threshold β to be larger than 1.0 during the parameter search. If
β > 1.0 is found, the detection system will be unable to take ef-
fective action since the threshold always stays higher than the con-
fidence scores.

On another hand, for the home scene, the confidence scores are
smoothed by average filtering with a window size of eleven audio
segments (equivalent to 100 ms) in order to reduce outliers.

4.3. Experimental results on the development data

The overall performance of our detection systems on the develop-
ment data are presented in Tables 3. As can be seen, our systems ob-
tain an overall segment-based ER and F1-score of 0.8304 and 31.6%
(averaged over Home and Residential area data), which outperform
the baseline by about 0.0796 and 7.9% absolute, respectively.

4.4. The final submission system and results

The final detection system was trained with the same settings as that
for the development data but we used the whole development data
for training. The trained system was then evaluated on the test data
to produce the final results.

As can be seen from Table 3, our system is inferior to the base-
line (i.e. 0.9644 compared to 0.8773 on the overall segment-based
ER). On class-wise performance, although our system obtains an
absolute gain of 0.2612 in terms of average segment-based ER over
the baseline on the Residential area data (as shown in Table 5), it

Table 4: Task3 (Home) segment-based class-wise performance on
test data.

Event Type Our system Baseline
ER F1 ER F1

Cupboard 1.0769 6.7 1.0385 0.0
Cutlery 1.3143 0.0 1.0571 0.0
Dishes 1.0000 0.0 1.0744 15.6
Drawer 1.0000 0.0 0.9811 7.1
Glass jingling 1.1333 0.0 1.0000 0.0
Object impact 1.0000 2.0 1.1574 12.3
Object rustling 1.0000 0.0 0.6786 59.6
Object snapping 1.0000 0.0 1.0000 0.0
People walking 1.0000 0.0 1.0833 16.1
Washing dishes 1.0000 0.0 1.0190 0.0
Water tap running 0.9693 31.1 0.6724 64.0
Average 1.0449 3.6 0.9783 15.9

Table 5: Task3 (Residential area) segment-based class-wise perfor-
mance on test data.

Event Type Our system Baseline
ER F1 ER F1

Bird singing 1.4673 43.7 0.9637 30.9
Car passing by 0.8263 46.3 0.4836 74.8
Children shouting 1.0000 0.0 1.1333 0.0
Object banging 1.0000 0.0 1.0000 0.0
People speaking 1.0000 0.0 2.6667 1.3
People walking 1.1096 0.0 1.1096 6.9
Wind blowing 1.0000 0.0 1.8750 25.0
Average 1.0576 12.9 1.3188 19.8

is subordinate to the baseline with an absolute loss of 0.0666 on the
Home data (as shown in Table 4).

5. CONCLUSIONS

We present in this report our audio event detection systems for
Task2 and Task3 of the DCASE 2016 challenge. We propose to
train discriminative decision forests that are jointly learning for the
classification and regression tasks. With the classification-oriented
training, the forests are able to select the discriminative features in
the mixtures of event overlaps to separate positive examples from
negative ones. Furthermore, the forests can also model the tem-
poral structure of audio events due to regression-oriented training.
We learn such a decision forest for each of target event category
for the detection purpose. Experimental results on the development
data show that our systems outperform the DCASE 2016 challenge
baselines on Task2 evaluation but is inferior to the baseline on Task3
evaluation.
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