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ABSTRACT 

Background: Sounds carry a large amount of information 
about our everyday environment and physical events that 
take place in it. Complementing visual inputs, sound can be 
more easily collected and stored. Increasingly machines in 
various environments can hear, such as smartphones, auton-
omous robots, or security systems. This work applies state-
of-the-art deep learning models that have revolutionized 
speech recognition to understanding general environmental 
sounds. 
 
Goal: This work aims to discriminatively characterize 
sound in 15 common indoor and outdoor acoustic scenes by 
classifying audio recordings. 
 
Data: We use dataset from the ongoing IEEE challenge on 
Detection and Classification of Acoustic Scenes and Events 
(DCASE). The dataset was collected in Finland by Tampere 
University of Technology between 06/2015 - 01/2016. It 
contains 15 diverse indoor and outdoor locations (classes), 
such as bus, cafe, car, city center, forest path, library, train, 
totaling 9.75 hours of audio recording. 
 
Methods: We extract 4 sets of features using signal pro-
cessing techniques, such as Mel-frequency cepstral coeffi-
cients (MFCC), various statistical functions, and spectro-
gram. The 4 features sets are: MFCC (60-dim), Smile983 
(983-dim), and Smile6k (6573-dim). On these features we 
apply 5 models: Gaussian mixture model (GMM), Support 
Vector Machine (SVM), Deep Neural Network (DNN), Hi-
erarchical DNN, Recurrent Neural Network (RNN), Recur-
rent Deep Neural Network(RDNN). Among them GMM 
and SVM are popular model for this task, while RDNN, is, 
to our knowledge, the first application of these models in 
the context of environmental sound. 
 
Results: Model performance varies with features. With 
small set of features (MFCC and Smile983) temporal mod-
els (RNN, RDNN) outperform non-temporal models 
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(GMM, SVM, DNN). However, with large feature sets 
(Smile6k) DNN outperforms temporal models (RNN and 
RDNN) and achieves the best performance among all stud-
ied methods. 
GMM with MFCC feature, the baseline model provided by 
the DCASE contest, achieves 67.6% test accuracy, while 
the best performing model (hierarchical DNN model with 
Smile6k feature) reaches 82.3% test accuracy. RNN and 
RDNN generally have performance in the range of 68_77%, 
while SVM varies between 56_73%.  
 
Conclusions: We find that deep learning models compare 
favorably to traditional models (GMM and SVM). No sin-
gle model outperforms all the other models across all fea-
ture sets, showing that model performance varies signifi-
cantly with feature representation. The fact that the best 
performing model is the non-temporal DNN model is an 
evidence that environmental scene sounds don’t neces-
sarily exhibit strong temporal dynamics. This is consistent 
with our day-to-day experience that environmental sounds 
tend to be random an unpredictable. 

1.! INTRODUCTION 

Recent developments in deep learning has brought significant im-
provements to automatic speech recognition (ASR) (Hannun et al. 
(2014)) and music characterization (Van den Oord et al. (2013)). 
However, speech is only one of many types of sounds, and in prac-
tice, humans often rely on a broad range of environmental sounds 
to detect danger and enhance scene understanding, such as when 
one crosses a busy street or navigate in a bustling office. More 
broadly, sound is a useful modality complementing visual infor-
mation such as videos and images, with the advantage that audio 
can be more easily collected and stored. Audio is also perspective 
and illumination invariant unlike its visual counterpart.  

Increasingly, machines in various environments can hear, 
such as smartphones, security systems, and autonomous robots. 
The prospect of human-like sound understanding could open up a 
range of applications, including intelligent machine state monitor-
ing using acoustic information, acoustic surveillance, cataloging 
and information retrieval applications such as search in audio ar-
chives (Ranft (2004)) as well as audio-assisted video/multimedia 
content search.  
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These broad range of environmental sounds also pose differ-
ent challenges than speech recognition problems. Compared to 
speech, environmental sounds are more diverse and span a wide 
range of frequency. Moreover, they are often less well defined. For 
example, there’s no standard dictionary for environmental events 
analogous to sub-word dictionary phonemes in speech, and envi-
ronmental sounds’ duration could vary widely. While sound anal-
ysis traditionally falls within signal processing domain, recent ad-
vances in machine learning and deep learning holds the promise to 
improves upon existing signal processing methods. In this work 
we focus on the task of acoustic scene identification, which aims 
to characterize the acoustic environment of an audio stream by se-
lecting a semantic label for it. Existing works for this task largely 
use conventional classifiers such as GMM and SVM, which do not 
have the feature abstraction capability found in deeper models. 
Furthermore, conventional models do not model temporal dynam-
ics, but rely on feature extraction pipeline to capture local temporal 
dynamics. For example, the winning solution by Roma et al. 
(2013) for an acoustic scene classification challenge in 2013 (the 
previous run of the current DCASE challenge), extracts MFCC 
and temporal features using Recurrence Quantification Analysis 
over a short time window. The actual classifier SVM does not ex-
plicitly model temporal dynamics. 

We apply state-of-the-art deep learning (DL) architectures to 
various feature representations generated from signal processing 
methods. Specifically, we use the following architectures: (1) 
Deep Neural Network (DNN) and hierarchical DNN (2) Recurrent 
Neural Network (RNN); (3) Recurrent Deep Neural Network 
(RDNN. Additionally we compare DL models with Gaussian mix-
ture model (GMM), and Support Vector Machine (SVM). We also 
use several feature representations based on signal processing 
techniques: Mel-frequency cepstral coefficients (MFCC), spectro-
gram, other conventional features such as pitch, energy, zero-
crossing rate, mean-crossing rate etc. There are several studies us-
ing deep learning in sound event detection(Emre, 2015, Mesaros 
2016). However, to the best of our knowledge, this is the first com-
prehensive study of a diverse set of deep architectures on acoustic 
scene recognition task, borrowing ideas from signal processing as 
well as recent advancements in automatic speech recognition. 

We use a dataset from the currently ongoing IEEE challenge 
on Detection and Classification of Acoustic Scenes and Events 
(DCASE). The dataset contains 15 diverse indoor and outdoor lo-
cations (classes), such as bus, cafe, car, city center, forest path, 
library, train, totaling 9.75 hours of audio recording (see section 
3.1 for detail). Our system has entered the DCASE 2016 contest, 
which runs from February 8 to June 30, 2016, at which point the 
final ranking of the contestants would be announced. 
 

2.! EXPERIMENT 

2.1.! Dataset 

We use a dataset from the currently ongoing IEEE challenge on 
Detection and Classification of Acoustic Scenes and Events 
(Mesaros (2016)). The dataset contains 15 diverse indoor and out-
door locations (labels), totaling 9.75 hours of recording and 
8.7GB in wav format. (Dual Channels, Sample Rate: 44100 Hz, 
Precision: 24 bit, Duration: 30 sec each) 
The classes and key content tags (acquired through selectively lis-
ten to samples of the recordings) are listed as below:  

 
Classes Key Content 
Bus: traveling by bus 
in the city (vehicle) 

#low frequency noise; #vibration; #un-
derstandable dialog; #card beeping; #re-
mote siren; 

Cafe or Restaurant: 
small cafe or restau-
rant (indoor) 

 #low volume noise; #blurred dialog; 
#live music; 

Car: driving or travel-
ing as a passenger, in 
the city (vehicle) 

#dashboard tick; #engine noise; #noise 
of bumpy road; 

 City center (outdoor) #intense low frequency noise; #mixed 
noise; 

Forest path (outdoor) #slight background noise; #radio jam-
ming sound; #remote bird chirp; #walk-
ing on the dirt road; #unclear dialog; 

Grocery store: me-
dium size grocery 
store (indoor) 

#clear dialog; #background music; #door 
opening; #noise from rotating parts; 

Home (indoor) #kitchen noise; #clear dialog; 
Lakeside beach (out-
door) 

 #breeze; #water noise; #unclear dialog; 

Library (indoor) #walking indoor; #chair noise; #mouse 
clicking; #unclear dialog; 

Metro station (indoor) #unclear dialog; #air releasing sound; 
#train coming; #train starting up; #train 
passing by; 

Office: multiple per-
sons, typical work day 
(indoor) 

#mouse clicking; #typing noise; #unclear 
dialog; 

 Residential area (out-
door) 

 #car passing by; #bird chirping; 

Train (traveling, vehi-
cle) 

#super low frequency noise; #radio jam-
ming; #noise of wheel hitting track 
seams; 

Tram (traveling, vehi-
cle) 

  #unclear dialog; #intense vibration; 
#noise from rotating parts; 

 Urban park (outdoor) #bird chirping; 
 

Table1. Classes and content 
 
There are 1170 audio clips, each 30 seconds long. We use the 

evaluation split from the contest and reserve 290 for testing (25%), 
and 880 for training. Since there are more than one audio clips 
from each location, we make sure no one location appears in both 
training and testing set. Note that this test set we use is part of the 
development set from the contest, not the real test set (which has 
not yet been released). Therefore our results might be different 
from the final contest result. 
 
 
 
 
 
 
 
 

Figure 1: Class distribution of training and test data. 
Within the 880 audio clip training set we also do 8-fold cross 

validation for model selection and parameter tuning, and again we 
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made sure that no one location appears in both train set and vali-
dation set to have better generalization accuracy estimates. 

2.2.! Features 

Using signal processing techniques (Section 2.1), we create 4 sets 
of features: 
1.! MFCC: We take 20 Mel-frequency cepstral coefficients over 

window length 0.04 second. We augment the feature with 
first and second order differences, resulting in a 60-dimen-
sional vector. 

2.! Smile983: We use OpenSmile (Eyben et al. (2010)) to gen-
erate MFCC, Fourier transforms, zero crossing rate, energy, 
and pitch, among others. We also compute temporal dynam-
ics feature, and second order dynamics features. After re-
moving features with less information, this results in 6573 
features. We select 983 features recommended by domain 
experts to create Smile983 feature (983 dimensional). Note 
this is much larger feature set than MFCC features and each 
feature represents longer time windows: 0.1 second. 

3.! Smile6k: This is the full 6573-dimensional feature set ex-
tracted from OpenSmile as described above. 

4.! Spectrogram: We compute spectrogram (section 2.1) and 
truncate at frequency 750Hz (the recording was 44100Hz).  
All features are standardized to have zero mean and unit var-

iance on the training set. The same standardization is applied at 
validation and test time. For each audio clip (train or test), our pro-
cessing pipeline consists of the followings: 1) Break up the audio 
clips into windows of 4_100ms segments; 2) Apply transforms to 
each audio clips to extract feature representation; 3) For non-tem-
poral model such as Gaussian Mixture Model, we treat each fea-
ture as a training example. For temporal models such as recurrent 
neural network, we consider a sequence of features as one training 
example; 4) At test time, we apply the same pipeline and as train-
ing and break the audio clip as multiple instances (feature or se-
quence of features), and the likelihood of a class label for a test 
audio clip is the sum of predicted class likelihood for each seg-
ment. The class with the highest predicted likelihood is the pre-
dicted label for the test audio clip. 

2.3.!Models and Hyperparameter Tuning 

In this project, we implemented following models (ta-
ble 1) with Keras library (Chollet(2015)) built on Theano (Bas-
tien et al. (2012)), using 4 Titan X GPU on a 32GB memory, Intel 
Core i7 node. 

2.4.! Ensemble Methods 

An ensemble is a collection of models whose predictions are com-
bined by different mechanism. An ensemble of classifiers helps to 
cancel out inaccurate predictions, thus, tends to be more accurate 
than any of its individual members. There are various ensemble 
methods to generate more accuracy sets of models. In this project, 
we apply six different ensemble methods to combine predictions. 
Also, we apply hierarchical ensemble methods to further stabilize 
our predictions. These six ensemble methods are random forest 
Algorithm, Extremely Randomized Trees, Adaboost, Gradient 
Tree Boosting, weighted average probabilities (soft voting with 
hand craft weight) and model selection method (Caruna (2004)). 

Here we ensemble deep learning models mentioned above. In 
total, we have twenty models for the problem, five different archi-
tectures, with four folds on the dataset. Most models have good 
performance (better than the baseline), some of then have medio-
cre and poor result. In theory, these ensemble methods could di-
rectly pick reasonable combination of models. However, we still 
divide these models into two sets, the elite model set and the me-
diocre model set. Also, to further stabilize the result of outcome, 
we also ensemble different ensemble results.  

Base on these ensemble methods, we generate four submis-
sions. Submission1 is the weighted average ensemble on four 
model selection ensemble methods. Submission2 is the weighted 
average ensemble on all twenty ensemble methods. Submission3 
is the weighted average ensemble on numerous models trained on 
the whole dataset. Submission4 is the single best performance 
model. 

 

 

3.! RESULTS 

Figure 4 shows the test accuracy for 5 classifiers over 3 features1. 
The model parameters are selected via cross validation and is de-
tailed in Table 1. We perform 10000 bootstraps on the test set to 
estimate the standard deviation, and the difference between the 
test errors are statistically significant within each feature group 
using T-test. We point out that GMM with MFCC feature is the 
official baseline provided in IEEE challenge on Detection and 
Classification of Acoustic Scenes and Events (DCASE), which 
achieves a mean accuracy of 67:6%, while our best performing 
model (hierarchical DNN with Smile6k) achieves mean accuracy 
of 82.3%. 
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Figure 5 are the confusion matrixes of the test result between 
15 classes based on DNN on Smile6k feature, which is the best 
performing setting from Figure 4. 

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4: Test accuracy of GMM, SVM, RNN, DNN(including 
hierarchical model), and RDNN on three features: MFCC, 

Smile983, and Smile6k feature. The model parameter details are 
in Table 1. Note that for Smile6k feature Liblinear SVM could 

not finish computation in reasonable amount of time and thus not 
included. 

4.! DISCUSSION  

Figure 4 shows that feature representation is critical for classifier 
performance. For each neural network model (RNN, DNN, 
RDNN) larger set of features extracted from signal processing 
pipeline improves performance. Among the neural network mod-
els, it is interesting to note that temporal models (RNN and 
RDNN) outperforms DNN using MFCC and Smile983 features, 
but DNN outperforms RNN and DNN on Smile6k features and 
achieves the best accuracy among all models. It is possible that 
with limited feature representation (e.g., MFCC and Smile983), 
modeling temporally adjacent pieces enhances local feature rep-
resentation and thus improves performance in those cases. How-
ever, with sufficiently expressive feature (e.g., Smile6k), the tem-
poral modeling become less important, and it becomes more ef-
fective to model local dynamics rather than long-range dependen-
cies. 

This observation is somewhat surprising as we originally ex-
pected temporal models to outperform static model (DNN) be-
cause sound is time-series data. A more careful consideration re-
veals that, unlike speech, which has long range dependency (a sen-
tence utterance could span 6_20 seconds), environment sounds 
generally lacks a coherent context, as events in environment oc-
curs more or less randomly from the listener’s perspective. To put 
it another way, a human listener of environmental noise is unlikely 
able to predict what sound will occur next in an environment, in 
contrast to speech. (Even though there are speeches and chatters in 
environmental sounds, it is the presence of speech rather than the 
content of speech that’s instrumental for our task.) This weak 
global dependency property in a time series data is not unique to 
this problem setting. Kim et al. (2015) made a similar observation 
in the context of facial expression synthesis based on speech. They 
found that even though facial motion is temporal, it is more bene-
ficial to simply model the local dynamics with decision tree, which 
outperforms HMM, LSTM, and other temporal models. Another 
example is edge detection in the image. While different parts of 
image could be related to each other, Dollár and Zitnick (2013) 

shows that it is more beneficial to model local patch dynamics than 
to consider the picture as a whole in performing edge detection. 

Regarding to the non-neural network models, the perfor-
mance of GMM decreases with increasing dimension, which is ex-
pected due to “curse of dimensionality”. That is, in high dimen-
sional space, the volume grows exponentially while the number of 
available data stays constant, leading to highly sparse sample. 
SVM’s performance is very poor for MFCC, as linear SVM has 
limited model capacity. With increasing feature dimension 
(Smile983) SVM performance improves.  

Finally, the confusion matrixes in Figure 5 shows that most 
locations are relatively easy to identify, such as beach, bus, and 
car. However, some locations are fairly difficult to distinguish, 
such as park and residential area, or home and library. Also, the 
model accuracy is highly dependent on how we divide the folds of 
the dataset. But at least, these are consistent with our intuition, as 
the less distinguishable locations in fact sound like each other 
(parks could be close to residential area; both home and library 
could be rather quiet). This is an evidence that the classifiers we 
train indeed learn some characteristics of the environment sounds. 

 
 

 

 

 
 

 
Figure 5: Confusion Matrix of DNN using Smile6k feature 
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5.! FUTURE WORK 

Since our results could be affected due to the limited data, data 
augmentation is expected to be very helpful. However, data aug-
mentation in the context of environment sound recognition is 
trickier than in speech recognition and image classification, be-
cause noise is often part of the environment sound, and simply 
adding noise could change the characteristics of the environment. 
One possible way to avoid that is to warp time without changing 
speed using phase vocoder. Another possibility to enhance data is 
to use other environmental sound data to perform joint training on 
the two datasets. For example we can let two tasks shares the same 
feature extraction and DNN pipeline, but use separate classifiers 
or softmax layers at the end for each task. While we can’t use 
external data for the purpose of DCASE challenge, but it’d be an 
interesting direction to improve performance with limited (la-
beled) data outside of the competition. 
 

6.! CONCLUSION 

In this work, we apply 5 models to acoustic scene recognition: 
Gaussian mixture model (GMM), Support Vector Machine 
(SVM), Deep Neural Network (DNN), Recurrent Neural Network 
(RNN), Recurrent Deep Neural Network (RDNNWe use 4 sets of 
features extracted using signal processing techniques: MFCC (60-
dim), Smile983 (983-dim), Smile6k (6573-dim), and spectro-
gram. 

We find that deep learning models compare favorably to tra-
ditional models (GMM and SVM). Specifically, GMM with 
MFCC feature, the baseline model provided by DCASE contest, 
achieves 67.6% test accuracy, while the best performing model 
(hierarchical DNN with Smile6k feature) reaches 82.3% test accu-
racy. RNN and RDNN generally have performance in the range of 
68_77%, while SVM varies between 56_73%. No single model 
outperforms all other models across all feature sets, showing that 
model performance varies significantly with feature representa-
tion. The fact that the best performing model is the non-temporal 
DNN model is evidence that environmental (scene) sounds don’t 
necessarily exhibit strong temporal dynamics. This is consistent 
with our day-to-day experience that environmental sounds tend to 
be random an unpredictable. 
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