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ABSTRACT

The DCASE2016 challenge is designed particularly for research in
environmental sound analysis. It consists of four tasks that spread
on various problems such as acoustic scene classification and sound
event detection. This paper reports our results on all the tasks by us-
ing Recurrent Neural Networks (RNNs). Experiments show that our
models achieved superior performances compared with the base-
lines.

Index Terms— RNN, GRU, acoustic scene classification,
sound event detection, audio tagging

1. INTRODUCTION

Environmental sound analysis has attracted a lot of researchers’ at-
tention recently. In real, a sound does not often come from a sin-
gle source but it is frequently a combination of sounds from many
sources, which make machines more challenging to perceive. The
four tasks in the DCASE2016 challenge cover several aspects of
environmental sound analysis: acoustic scene classification, sound
event detection, and domestic audio tagging.

In the paper, we introduce our experimental results by employ-
ing Recurrent Neural Networks (RNNs) to all the tasks. The re-
mainder of this paper is organized as follows. Section 2 presents
general information about RNNs, and describes RNN architectures
for classification. In Section 3, we conduct experiments of the four
tasks, and report our results. Finally, Section 4 draws our conclu-
sions.

2. RECURRENT NEURAL NETWORKS

A recurrent neural network is a computational neural network that
has feedback connections, so it works efficiently and flexibly with
time-series signals such as audio and video. Figure 1a shows a sim-
ple RNN structure where hidden units are self-connected. The cor-
responding diagram of its recurrent units in Figure 1b illustrates
how the hidden state accumulate information from its previous state
and an input at a specific time.

In simple RNNs, the hidden state at a time t is computed by

ht = f(Wihit +Whhht−1) (1)

where it is input at time t ; f is an activation function; Wih and
Whh represent weight matrices of connections between input and
hidden and between hidden and hidden layers, respectively. For
conciseness, biases are not included.

In fact, due to the exploding and vanishing gradient problem
[1], a simple RNN is not easy to train, and not able to deal with

Figure 1: (a) A simple recurrent neural network; (b) The corre-
sponding block diagram of a simple recurrent unit.

long-range dependencies. Alternatively, we employ Gated Recur-
rent Neural Networks that are RNNs whose hidden units are gate-
based. Two well-known types of Gated RNNs are Long Short Term
Memory networks (LSTMs) and Gated Recurrent Units (GRUs).
While LSTMs have been widely used for a long time, GRUs have
just been introduced recently in [2]. However, it was shown that
GRUs have comparable performances to LSTMs in various appli-
cations especially in sequence modeling, but with lower computa-
tional cost [3]. Hence, GRU is our choice in this challenge, RNN
models in the experiment section are referred as GRUs from now
on. Description about LSTM and GRU can be found in [4, 5] and
[2, 3], respectively.

RNNs are very flexible in classifying sequential data in both
cases of sequence-to-one classification and sequence-to-sequence
classification as can be seen in Figure 2a&2b. Instead of using
a sequence-to-sequence RNN, a bidirectional RNN (BiRNN) in
which there is a second hidden layer that learns input sequence in an
inverse direction (Figure 2c) is frequently employed. It is supposed
to generate better prediction since information to make a predic-
tion at each time-step comes from both the backward and forward
directions.

3. EXPERIMENTS

3.1. Task 1: Acoustic scene classification

The used features are 13 mel-frequency cepstral coefficients
(MFCCs) extracted from frames of duration 0.02 second and 0.01
second overlap, with their first and second temporal derivatives,
which forms 39 dimensional features. The features are processed
by doing zero mean and unit variance on each dimension over the
training set. We divide each audio features into windows, each is 0.5
second long. Totally, around 35.000 windows are segmented from
each class. We use them as input sequences to the RNN model.
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Figure 2: Recurrent neural networks for classification: (a) A
sequence-to-one RNN architecture, (b) A sequence-to-sequence
RNN architecture, (c) A sequence-to-sequence BiRNN architecture.

The network type is sequence-to-one, the net has 100 hidden units.
Output of a window is probabilities of labels computed by softmax
connections. Cross-entropy was used as cost function. We train
the network by gradient descent: gradient clipping with a threshold
of 1, and ADADELTA method with hyper parameters ρ = 0.95,
ε = 1e − 6 as in [6]. The optimal set of parameters is found at
the best results on the development set. In testing time, a prediction
of a recording is an average of predictions from all its segmented
windows. Table 1 shows average results over 4 folds from our sys-
tem and the baseline [7]. We achieve an overall average accuracy of
82.09% outperforming the baseline with a margin of 9.59%.

3.2. Task 2: Sound event detection in synthetic audio

The task 2 is for detecting events in synthetic audio. Besides 11
given categories, we consider an “unknown” category, which would
help our model distinguish better. Training data for “unknown” are
extracted from a random file in the development set. After that, the
file will be removed from the development set, and not be included
for evaluation. CQT coefficients are extracted from audio files with
the same configuration as the baseline [7]. Then, we apply PCA

Table 1: Acoustic scene classification results (average over 4 folds)

Label Accuracy (%)
Baseline Ours

Beach 69.3 88.16
Bus 79.6 60.53
Cafe / Restaurant 83.2 73.98
Car 87.2 92.30
City center 85.5 97.55
Forest path 81.0 92.46
Grocery store 65.0 89.60
Home 82.1 79.59
Library 50.4 83.63
Metro station 94.7 96.05
Office 98.6 100.00
Park 13.9 67.50
Residential area 77.7 72.84
Train 33.6 50.96
Tram 85.4 86.14
Overall accuracy 72.5 82.09

Table 2: Results of sound event detection in synthetic audio

Model
Segment-based
overall metrics

Event-based
overall metrics

ER F-score F-score (onset-only)
Baseline[7] 0.7859 41.6 % 30.3 %
Ours 0.3412 81.15% 32.32%

whitening with 99% of variance retained to reduce dimension size
of features. We exploit a BiRNN with size of 100 hidden units that
learns on input sequences of 50 frames. Table 2 reports our results
in this task. In segment-based overall metrics, the ER and F-score
of our model are 0.3412 and 81.15%, respectively, which surpass
that of the baseline.

3.3. Task 3: Sound event detection in real life audio

Each recording is encoded to extract 40 log mel-filter bank coef-
ficients, then these features are normalized to zero mean and unit
variance. A BiRNN with size of 50 hidden units is exploited to
work on input sequences that is 50 frames long. We evaluate results
by using metrics that are defined in [8]. In table 3, we present values
of 0.815 average ER and 49.75% F-score achieved from our model
those are superior than the baseline.

3.4. Task 4: Domestic audio tagging

In this task, each recording is converted to get 13 MFCCs with
frame size of 0.04 second and hop size of 0.02. These features
then are normalized to zero mean and unit variance. RNN type is
sequence-to-one. Given the setup of five folds, at each training time,
3 folds are used to train, 1 fold is for development set, and the re-
mainder is test set. All folds are used as test data one time. The
optimal set of parameters is determined by the best performance on
the development set. As can be seen in table 4, our experimental
results are comparable to the baseline with 0.20 EER.
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Table 3: Results of sound event detection in real life audio
Baseline[7] Ours

Acoustic scene ER F-score ER F-score
Home 0.96 15.9 % 1.03 39.5%
Residential area 0.86 31.5 % 0.60 60.0%
Average 0.91 23.7 % 0.815 49.75%

Table 4: Audio tagging results over evaluation folds

Audio tag EER
Baseline[7] Ours

adult female speech 0.29 0.26
adult male speech 0.30 0.24
broadband noise 0.09 0.11
child speech 0.20 0.21
other 0.29 0.29
percussive sound 0.25 0.23
video game/tv 0.07 0.06
Mean error 0.21 0.20

4. CONCLUSIONS

In this report, we introduce our experimental results in the
DCASE2016 challenge. Recurrent neural networks showed their
effectiveness and flexibility in working with various problems in
audio analysis.
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