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ABSTRACT

In this submission we propose to use Gaussian mixture mod-
elling and Archetypal Analysis based system for DCASE17 acous-
tic scene classification task. We propose a feature learning ap-
proach via decomposing time-frequency (TF) representations with
Archetypal Analysis (AA). In order to process large number of TF
frames and capture the variations efficiently, firstly a class-specific
GMM is build on frames of TF representations, followed by AA on
GMM means to build class specific local dictionaries. Next, the TF
representations are projected on the concatenated AA dictionary to
get the non-negative sparse activations. Finally, the TF frames are
reconstructed back using the computed activation vectors, and are
then used to train a SVM classifier. The proposed method signifi-
cantly outperforms the baseline system.

Index Terms— Archetypal analysis, dictionary learning,
acoustic scene classification.

1. INTRODUCTION

The goal of Acoustic Scene Classification (ASC) task is to clas-
sify unstructured data from audio scenes, which may have variable-
quality recordings, background/environmental noise, and variation
of the acoustic content itself. In search of effective discriminative
features representing a scene, existing works in the literature used
the features inspired by speech e.g., Mel Frequency Cepstral Coef-
ficients, zero-crossing rate etc. [1]]. In addition, various other works
have used image processing techniques to derive features e.g., his-
tograms of oriented gradients from the time frequency representa-
tions [2,3]. Most of the existing features focus on describing a
specific aspect of the signal, and hence lack generalizability and
flexibility. However, a few existing works for ASC have success-
fully employed feature learning techniques such as nonnegative ma-
trix factorization (NMF) to derive adaptive representations of the
data [4]. Similarly, the method proposed in this work combines the
advantage of Gaussian mixture modeling and archetypal analysis
(AA) to derive features for ASC.

This report is organized as follows: Section [2] provides a de-
tailed description of the method proposed for the ASC task. Our
experimental setup is provided in section i and results are reported
in Sectiond] Finally, the report is summarized in section[5]

2. OUR SUBMISSION

Our challenge contribution employs Gaussian mixture modeling
and archetypal analysis based approach for learning discriminative
features for ASC task. Final classification using the derived fea-
tures is performed using SVM classifier. Our system outperformed

the DCASE17 baseline system in terms of average classification ac-
curacy at 88% on development data using 4fold evaluation strategy
as provided in challenge.

2.1. Proposed GMM-AA based method for ASC

Designing a good ASC system requires a suitable choice of fea-
tures which can efficiently describe the acoustic environments. In
this submission we have considered supervised feature learning us-
ing time-frequency (TF) representations namely the constant Q-
transform (CQT), which has been shown to perform well for ASC
task. Let X? € R denote the CQT transform of a given acous-
tic scene recording, where m” and n represent the number of time
frames and the number of frequency bands, respectively. Next,
a pooling step is applied on X to obtain a suitable representation
for feature learning step. In this work, we applied a max-pooling
operator on non-overlapping frames from Isec of each recording.
Thus, after the pooling step the data matrix X? is transformed into
X € R™" where m = 10 for 10sec recording. This way one
can, not only perform temporal integration i.e., capturing the long
term dependencies present in audio signal, but can also reduce the
amount of data frames to be processed. In order to efficiently model
the variations present in the data, all the training examples of each
class (after log compression) are next modeled using a GMM. Con-
sider m; frames (obtained after pooling step) of an acoustic scene
class (obtained from all the training examples) arranged in a ma-
trix X; € R”™ as rows, (i = 1,2,...C, C being the total num-
ber of classes). The training data in X; is modeled using a GMM
S Nl T) with k = 1,2, ..., K Gaussian mixtures, where
1, denotes the mean corresponding to k™ mixture of i class.

The next step of the proposed approach perform feature learn-
ing from the learned GMM based generative model by decompos-
ing the means of each class using archetypal analysis. AA performs
convex-hull approximation via sparse-convex non-negative decom-
position of the data, and this approach has been shown to extract
underlying relevant basis/archetypes representing data [S|]. Using
AA, t; archetypes for each class are stored together to form a large
overcomplete dictionary D € R™" (a mixture of local dictionaries),
such that ¥, #, = ¢. This learned dictionary D is used to compute a
sparse-convex representation corresponding to the pooled represen-
tation X; (both train and test) by solving the following optimization
function:

argmin|[X” -~ DTAIF,A £ [a= Ol =11,
Aajel;
where || . || is the Frobenius norm, A denotes the simplex, > de-

notes element wise operation, and a; is a column of A. The esti-
mated activation matrix A; is used to reconstruct the initial repre-
sentation as X! = D”A,. Finally, the reconstructed X; (for training
data) is used to train a SVM classifier, to perform predictions on
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the test data. The idea of using reconstructed features for classifica-
tion is motivated by recent works of Sainath et. al [6] in the field of
speech recognition.

3. EXPERIMENTAL SETUP

Only first channel of each audio file is processed, and its CQT
is extracted with the MATLAB CQT toolboxﬂ (hopsize-882, 12-
bands/octave), resulting in 500 frames and 146 frequency bands.
After pooling each audio file is represented with 10 TF frames.
Each class-specific GMM is build with 200 means using Microsoft
identity toolkiﬂ AA is performed using the fast AA algorithm
(based on SPAMS toolboxﬂ) proposed in [5]. Here we have con-
sidered robust AA to deal with any outlier frames which may af-
fect the performance of the system. For each class 40 archetypes
are learned, resulting in a final concatenated dictionary of size
600 x 146. The SVM classifier is trained with one-vs-one strategy
(box-constraint=3), and majority voting is employed for 10 frame
representations of each audio recording on the obtained scores to
decide the class label. All experiments are performed in MATLAB
R2016b under Winl10 OS on a desktop with 4th Gen i7-processor,
12Gb RAM and no GPU.

4. RESULTS

Our final system achieved an accuracy of 88% + 0.5 (95% C.I.)
averaged across four different folds using the provided develop-
ment dataset. Thus we achieved an improvement of 13.2% over the
DCASEI17 baseline system. The confusion matrix for our GMM-
AA system is shown in Table. 1.

On evaluation dataset, our system ranked 17" (among teams)
and achieved an accuracy of 65.7% with range 63.4 — 68.0% (95%
C.I.). While our system performed well for most classes, it per-
formed poorly on some confusing classes like forest_path, park, res-
idential area etc., which we wish to investigate in the future.

5. DISCUSSION

The proposed work show the feasibility of using a GMM-AA based
system using TF representations for ACS task. While GMM helps
in efficiently modeling the data distribution, AA learns represen-
tative basis/archetypes which can be used to emphasis relevant in-
formation to discriminate between different audio scenes. The ob-
tained atom activations are probabilistic in nature and they depict
the amount of contribution coming from atoms of a particular class.
This gives easy interpretation of data, i.e., larger support for correct
class. Hence, the reconstructed feature will emphasis relevant class
information. Further, note that data modeling for each class is done
in an independent supervised way but not in a joint manner, and we
hope doing so will further increase the accuracy of our system.
Similar to ours, the system proposed by Bisot et. aﬂ (ranked
10" among teams with accuracy of 69.8%) based on non-negative
matrix factorization approach, shows that the conventional ap-
proaches can still potentially be applied to achieve better result.
The improvement achieved by their system (compared to ours) was
result of 1) joint supervised factorization 2) features learned on

lhttps://Www.cs.tut.ﬁ/sgn/arg/CQT/
2https://www.microsoft.com/en—us/download/cletails.aspx?id:52279
3spams-devel.gforge.inria.fr
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averaged signal from both channels and 3) fusion with DNN sys-
tem trained on NMF features, where we feel the third approach is
mainly making the difference in results. Further, many of the sub-
missions in the challenge were based on deep learning approaches
such as a convolutional neural network (CNN) and recurrent neu-
ral network (RNN). A careful analysis of results shows that sim-
ply applying CNNs with input features (mono/binaural) like CQT,
mel-spectrogram etc., performed poorly as compared to the pro-
posed approach. Although DCASE-17 provided more amount of
audio data from last year, it still may not be sufficient for apply-
ing deep learning approaches efficiently. To address this some of
the top performing systems employ data augmentation and/or score
fusion with deep architectures learned on various different features
(with/without background subtraction). In future, parallel to deep
architectures (CNNs/RNNs), we wish to explore deep matrix fac-
torization approaches for learning discriminative features for ASC.
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Table 1: Confusion matrix for our GMM-AA system. (TPR) True Positive Rate, (FAR) False Alarm Rate. Classes: 1. Beach 2. Bus 3.
Cafe/Restaurant 4. Car 5. City center 6. Forest path 7. Grocery store 8. Home 9. Library 10. Metro station 11. Office 12. Park 13.
Residential area 14. Train 15. Tram

1 | 84% | 1% 1% | <1% | <1% | <1% | 5% 1% 3% | <1% | 4% | 84% | 16%

2 1% | 93% 1% | <1% <1% | 1% <1% 1% 3% | 93% | 1%

3 | <1% 93% 1% | <1% | <1% | 4% 1% <% | 1% | <1% 93% | 1%

4 1% 1% 96% <1% <1% | <1% <1% 2% 96% 4%

5 1% 1% 83% | 1% | <1% 1% | <1% | 1% | 12% <1% | 83% | 17%

6 | <1% 1% 1% | 81% | <1% | 14% | <1% | <1% | <1% | <1% | 2% 81% | 19%

7 | <1% | <1% 2% <1% | <1% | 93% 2% <1% 2% <1% | <1% | <1% | 93% 7%

8 1% | <1% | <1% <1% | 2% | <1% | 94% | 1% <1% | <1% | 1% <1% | 94% | 6%

True 9 1% | <1% | <1% | <1% | 1% | <1% | <1% | 2% | 93% <1% | 1% | <1% | 1% 93% | 1%
Class 10 | <1% 1% <1% | 3% | <1% | 4% | <1% | 8% | <1% | 1% 1% <1% | 88% | 12%
11 | <1% <1% 1% | <1% | 4% | <1% | <1% | 93% | <1% | <1% 93% | 7%

12 | 5% 1% 1% | <1% | 3% | <1% | <1% | <1% | <1% | 81% | 7% 1% 1% | 81% | 19%

13 | 6% 1% 10% | 3% 1% 2% 1% 1% 8% | 68% | <1% | <1% | 68% | 32%

14 3% 2% <1% | <1% <1% | <1% 2% <1% | <1% 1% 90% 2% 90% | 10%

15| 2% 1% 1% 2% <1% | <1% | 1% | <1% | <1% <1% | 1% 1% | 91% | 91% | 9%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | TPR | FAR

Predicted Class
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