
Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

CONVOLUTIONAL NEURAL NETWORKS WITH BINAURAL REPRESENTATIONS AND
BACKGROUND SUBTRACTION FOR ACOUSTIC SCENE CLASSIFICATION

Yoonchang Han1, Jeongsoo Park1,2 Kyogu Lee2

1 Cochlear.ai, Seoul, Korea
2 Music and Audio Research Group, Seoul National University, Seoul, Korea

{ychan, jspark}@cochlear.ai, kglee@snu.ac.kr

ABSTRACT

In this paper, we demonstrate how we applied convolutional neural
network for DCASE 2017 task 1, acoustic scene classification. We
propose a variety of preprocessing methods that emphasise different
acoustic characteristics such as binaural representations, harmonic-
percussive source separation, and background subtraction. We also
present a network structure designed for paired input to make the
most of the spatial information contained in the stereo. The ex-
perimental results show that the proposed network structures and
the preprocessing methods effectively learn acoustic characteristics
from the audio recordings, and their ensemble model significantly
reduces the error rate further, exhibiting an accuracy of 0.917 for
4-fold cross-validation on the development. The proposed system
achieved second place in DCASE 2017 task 1 with an accuracy of
0.804 on the evaluation set.

Index Terms— DCASE 2017, acoustic scene classification,
convolutional neural network, binaural representations, harmonic-
percussive source separation, background subtraction

1. INTRODUCTION

Sounds contain a variety of information that humans use to under-
stand the surroundings, and our behaviours and thoughts are heavily
based on this auditory information along with information gathered
from different sensory registers. Even if visual information is not
given, humans can easily recognise the scene from the surrounding
sounds because our expectations are well trained from experience.
For instance, we know that bird chirping sound is likely recorded in
the park, and cutlery sound is recorded in the restaurant. In addi-
tion, it is also possible to guess the size of the space from the sound,
because cave-like environment such as metro station produce a lot
of reverberations while outdoor scenes do not. However, creating
an automated system that understands acoustic scenes is difficult,
because it is a fairly high level of information.

Although acoustic scene classification (ASC) is one of the main
objectives of machine listening research [1], the research commu-
nity has lacked benchmark dataset so far [2]. Arguably, Detection
and Classification of Acoustic Scenes and Events (DCASE) chal-
lenge organised by IEEE Audio and Acoustic Signal Processing
(AASP) Technical Committee is one of the first large-scale chal-
lenges for ASC research. A number of novel approaches have been
proposed in DCASE 2013 [3] and DCASE 2016 [4],and perfor-
mances of submitted systems are evaluated under the same exper-
imental conditions. In DCASE 2013, most of the submissions are
based on hand-made acoustic features along with classifier such as
in [5, 6]. Some techniques that widely used for image processing

such as a histogram of gradients (HOG) [7] and recurrence quantifi-
cation analysis (RQA) [8] features also achieved top places. There
was also an approach that utilises deep learning such as [9] using re-
stricted Boltzmann machine, but it showed moderate classification
accuracy, presumably due to small amounts of data.

DCASE 2016 task 1 is essentially an extended version of the
previous DCASE 2013 ASC task, providing a larger amount of
data for an increased number of scenes. Many of participants ap-
plied a deep learning approach such as a convolutional neural net-
work (ConvNet) [10, 11, 12] and recurrent neural network (RNN)
[13, 14]. Although deep learning approach has been successful,
top ranks were achieved by i-Vector [15] and non-negative matrix
factorization (NMF) [16], which are rather conventional dictionary
learning methods. Also, about half of submitted algorithms in this
challenge used mel-frequency cepstral coefficients (MFCCs), one
of the most popular hand-made features. As can be seen from the
results of the DCASE task in the past, the deep learning approach
has shown promising results but clearly no better than the existing
methods.

Deep learning technology is rapidly evolving everyday. Al-
though DCASE 2017 [17] provides an increased amount of audio
data compare to 2013, it is still not sufficient to take full advantage
of the potential of deep learning approach. However, we believe
that finding an appropriate way to utilise deep learning is one of the
most important research topics in the audio processing field at the
moment. This paper demonstrates our approach on ASC task using
ConvNets and propose various audio domain specific preprocessing
methods that emphasise the different aspects of the acoustic scene.
The following sections describe the details of the proposed system
and the experimental results and conclusions.

2. SYSTEM ARCHITECTURE

This section introduces the proposed audio preprocessing meth-
ods.It also describes the details of the proposed ConvNet architec-
ture and how we have configured the ensemble model from them.

2.1. Audio Preprocessing

In general, we used a full 44.1 kHz without downsampling and am-
plitude of audio clips was normalised first. Then, we extracted the
spectrograms with 128 bin mel-scale following [10] which is a suf-
ficient size to keep spectral characteristics while greatly reduce fea-
ture dimensions. The window size for short-time Fourier transform
was 2,048 samples (46 ms) with a hop size of 1,024 samples (23
ms). The resulting mel-spectrogram was converted into logarithmic
scale, and standardised by subtracting the mean value and dividing
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Figure 1: Extracted mel-spectrogram examples of proposed preprocessing methods applied to an audio clip for “café/restaurant” scene. “BS”
is background subtraction method, and the numbers in the brackets are the median filtering kernel sizes for time and frequency axes.

by the standard deviation. Standardisation is performed feature-
wise and parameters are obtained only from training data to scale
both of training and testing data. Finally, we split 10 s audio clip
into 1 s audio chunks without overlap for both of training and test-
ing. We used multiple versions of mel-spectrogram which can be
largely divided into three methods which are binaural representa-
tions, source separation, and background subtraction (BS). A de-
tailed explanation of each method is presented below, and examples
of extracted mel-spectrograms are illustrated in Fig.1.

2.1.1. Binaural representations

Although it is common to record audios in stereo, it is usual to make
it monaural first by averaging signals prior to processing, as in our
previous work [10]. However, we decided to use left-right (LR)
and mid-side (MS) pairs in this work, because these contain richer
spatial information than mono. For instance, if a car passes in front
of a microphone, the sound moves from L to R or R to L, while it is
just amplitude change in mono. In addition, the MS representation
emphasises the time difference between the sounds reaching each
side of the stereo microphone. Use of binaural information have
shown superior results in the previous DCASE challenge as in [15]
as well. The Mid channel is defined as L+ R and the side channel
is defined as L − R which is a difference between two channels.
For LR and MS, we used 2-conv. model for the analysis explained
in the Section 2.2.

2.1.2. Harmonic-percussive source separation

Sound can be generally be divided into two types: harmonic and
percussive. In conventional research efforts, harmonic-percussive
sound separation (HPSS) algorithms were presented in the context
of music signal processing aimed to separate drum sounds from the
mixture as in [18]. Here, we separated the audio clips in the dataset
into two using the NMF-based HPSS algorithm [19] which enables
to separately exploit harmonic and percussive aspects of a sound.
Prior to the separation, the stereo sounds are converted to mono.

The experimental parameters used for the separation are 0.7, 1.05,
1.05, and 0.95 for α, β, γ, and δ, respectively, and frame size and
hop size are 4,096 and 1,024 samples, respectively. The total num-
ber of bases is set as 200, consisting of 100 flat-initialised percussive
bases and 100 randomly-initialized harmonic bases. Wiener filter-
ing was not used for the post-processing of NMF, however, we have
made the last 30 iterations out of 100 total iterations not to include
prior imposition to reduce any artifacts that may be generated in the
separation process.

2.1.3. Background subtraction

Typically, median filtering is used for removal of noise in scanned
images. Moore Jr. and Jorgenson [20] used this technique for object
extraction by subtracting median filtered data from original data.
Although this technique is more commonly used in the image pro-
cessing fields, we think that it can be useful to eliminate the “steady”
noise from the environment or recording devices. By doing so,
we expect the spectral characteristics of acoustic events in the mel-
spectrogram to be emphasised and to be more robust against over-
fitting. Similar to object detection technology, we applied median
filtering on the mel-spectrogram and subtracted it from the original
version. We first converted stereo audio into mono prior to the pro-
cess. The filter sizes used for median filtering are 21, 43, 87 for
the time axis (approximately 0.5 s, 1.0 s, and 2.0 s), and 1, 11 for
the frequency axis, which are chosen empirically by the experiment.
Note that using a kernel size of 1 for on the frequency axis is vir-
tually 1-D median filtering over time. As shown in the bottom row
of Fig.1, the background subtraction process emphasizes different
spectral characteristics from neighboring regions, which makes it
easier to detect acoustic events.

2.2. Network Architecture

We used ConvNet consisting of 8 convolution layers using 3 × 3
receptive fields inspired by VGGNet [21]. In recent years, it has be-
come common to use extremely deep (100 <) network and residual
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Figure 2: The overall architecture of the proposed system. Multiple ConvNet models are individually trained using a various preprocessing
methods and combined into an ensemble model. It then calculates the average probabilities for entire audio clip to detect the scene.

Figure 3: Details of the proposed convolution block, 1-conv. model, and 2-conv. model. The numbers in the brackets are the kernel size for
padding/convolution/pooling layers, the number of filters for convolution blocks, and the number of hidden units for dense layer.

connections such as in [22, 23] in the computer vision field. How-
ever, we found that it is not highly effective to increase the number
of layers or to use a residual connection, at least in our framework,
likely due to insufficient amount of data to extract full advantage
out of it. The overall architecture of the proposed system is illus-
trated in Fig.2 which uses two different network architectures: 1-
conv. model and 2-conv. model. The former is used for single mel-
spectrogram input such as BS, and the latter was used for paired in-
put such as LR, MS, and HPSS. 2-conv. model is similar to 1-conv.
model, but processes two channels individually and concatenated
before the last fully-connected layer. For both models, we used the
same convolution block as illustrated in Fig.3. We employed batch
normalization (BN) [24] and rectified linear unit (ReLU) which are
de facto standard for modern ConvNets. However, BN and activa-
tion function are located before the convolution layer in our pro-
posed network, unlike other networks, because we can get a steady
improvement in accuracy. This kind of pre-activation concept can
be found in recent residual network papers [22, 23]. We consider
that the improvement mainly comes from BN applied for the input
data and after max-pooling layers, prior to convolution process.

2.3. Network Ensemble

The results generated by using the same network may be slightly
different and model ensemble can generalize this problem [25].

Therefore, we repeated all experiment 3 times using the validation
set extracted with different random seeds for each model and took
an average probability for each class. In the final decision process,
we used two strategies the mean ensemble and ensemble selection
method proposed by Caruana et al. [26]. Ensemble selection algo-
rithm aims to find the optimal combination weights by iteratively
adding models that maximize the performance of the combination
set. We used the mean of test accuracy of all folds as a target value
and initialized the ensemble model using LR, MS, and HPSS prior
to adding other models. We used 200 iteration and optimal weight
we found was 36, 25, 21, 23, 29, 33, 17, 12, and 7 for LR, MS,
HPSS, and BS following the order listed in Table1, respectively.
Note that this ensemble selection makes use of label from test fold
of cross-validation as a hill-climbing set, thus it should not be di-
rectly compared to other results of cross-validation.

3. EXPERIMENTS

3.1. DCASE 2017 ASC Dataset

The DCASE 2017 task 1 includes 15 scenes which are bus,
café/restaurant, car, city center, forest path, grocery store, home,
lakeside beach, library, metro station, office, residential area, train,
tram, and urban park. A total 312 segments (52 minutes of audio),
recorded at 44.1 kHz with 24-bit resolution in stereo, were provided
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Algorithms Mean Acc. Algorithms Mean Acc.

Baseline 0.748 BS (2.0 s, 1) 0.816

Mono 0.844 BS (0.5 s, 11) 0.861

LR 0.871 BS (1.0 s, 11) 0.856

MS 0.879 BS (2.0 s, 11) 0.843

HPSS 0.869 Mean ensemble 0.917

BS (0.5s, 1) 0.801 Ensemble sel.* 0.919

BS (1.0s, 1) 0.805

Table 1: Mean accuracy for 4-fold cross-validation using proposed
ConvNet with various preprocessing and ensemble methods. Base-
line and mono are not used for ensemble models, but illustrated for
comparison purpose. Note that the result with * used test label,
hence it should not be directly compared to other results.

per scene and the length of the audio segments were 10 seconds.
The dataset size is increased compare to 2016, but the length of
each audio segment was shortened to 10 s from 30 s, so each audio
clip contains less information.

3.2. Experiment Settings

The experiment was carried out using 4-fold cross-validation set-
ting provided by the organizer. Network training was performed by
optimizing the categorical cross-entropy and stochastic gradient de-
scent (SGD) with Nesterov momentum [27]. The learning rate, de-
cay, and mini-batch size were set to 0.02, 0.0001, and 128, respec-
tively. We trained the network with the NVIDIA GTX 970 and the
experiment took about 2 h per model. We used a randomly selected
15% of the training data for validation and the network training was
early-stopped if the validation loss did not decrease by more than
20 epochs. The number of examples for training was about 29,800.
Baseline system provided by the organizer used mel-spectrogram
with 40 mel with a frame size of 40 ms as an input feature for 2
layers x 50 hidden units multilayer perceptron (MLP).

4. RESULTS

4.1. Cross-validation Results

Accuracy is used as a performance metric and the 4-fold mean ac-
curacy of each preprocessing method and ensemble models are pre-
sented in Table 1. As a result, the accuracy of the 2.conv-models
was 0.87, and BS with various settings (1-conv. models) was gen-
erally not as good as 2-conv. models. By combining the results
from all the models, it was possible to improve the mean accuracy
to 0.917, and ensemble selection slightly pushed it up to 0.919. Be-
cause of page limitations, we could not present all class-specific
results. However, BS results showed quite different confusion be-
tween classes, depending on median filtering size, which is the main
reason for the performance improvement of the ensemble. For in-
stance, although the result of BS (0.5 s, 1) are relatively poor com-
pared to other methods, it showed about 16% higher accuracy than
the LR for “bus” scene. The confusion matrix of ensemble selec-
tion model result is presented in Fig. 4, and it can be observed that
the confusion is relatively focused in the home and office, park, and
residential area.
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Figure 4: 4-fold mean confusion matrix of the proposed ConvNet
with ensemble selection. X-axis indicates the predicted label and
Y-axis indicates the true label.

4.2. DCASE 2017 Submission

We used the same experiment settings from development set for the
evaluation set. For the final submission, we submitted four slightly
different results following the challenge rule. We used a mean prob-
ability of 4-fold cross-validation models for submission 1 and 2, and
used a newly trained model using a full development set for submis-
sion 3 and 4. Regarding ensemble method, we used ensemble se-
lection for submission 1 and 3, and mean ensemble for submission
2 and 4.
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5. CONCLUSION

In this paper, we illustrated how we applied ConvNet for identi-
fying the acoustic scene. The main contribution of this paper is
presenting a various preprocessing methods that are useful for Con-
vNet, also having a great synergy when combined together in an
ensemble model. As a result, we could obtain an accuracy of 0.917
for 4-fold cross validation on the development set and 0.804 on the
evaluation set. In the future, we plan to investigate the optimal ker-
nel size for BS and pre-activation convolution block further, which
are currently selected heuristically.
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