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ABSTRACT

This paper presents an application of a convolutional recurrent
neural network (CRNN) for the task of acoustic scene classifica-
tion (ASC). Convolutional layers of CRNN are used as high-level
feature extractors and gated recurrent layers are used to model the
long term temporal context of the acoustic samples. The developed
methods are evaluated using the 2017 edition of the ”Detection and
Classification of Acoustic Scenes and Events” (DCASE) challenge
task 1 and consequently tested on the datasets provided for the task
of ASC. In this paper, we use two CRNN-based methods which
score an overall accuracy of 78.9% and 80.8% compared to base-
line feed-forward neural network with 74.8% accuracy.

Index Terms— acoustic scene classification, deep neural net-
works, convolutional neural networks, recurrent neural network

1. INTRODUCTION

Acoustic scene classification (ASC) is a research area which refers
to the recognition of an audio context from a recording. Audio con-
text can be defined as the ensemble of sound events and background
noises associated to a particular environment, e.g. a beach or a train.
ASC has applications for example in context awareness devices. An
example of such technology could be the automatic adjustment of a
functionality (phone ringtone etc.) depending on the context.

A vast majority of approaches in ASC used to be based on
hand-crafted features [1], in order to facilitate discrimination be-
tween all the acoustic classes involved. However, such features are
an obstacle for ASC performance and it should be admitted that
derived features should be more powerful. Deep learning methods
have brought great advances in the field of statistical pattern recog-
nition [2], thus becoming a strong alternative to the hand-crafted
features. This methods offer great tools to automatically learn fea-
tures from raw input data, and are consequently fit for ASC. Con-
volutional neural network (CNN) has been proposed previously for
ASC [3, 4]. In addition, methods combining CNNs with I-vector
representations [5] and also source separation based methods such
as non-negative matrix factorization (NMF) [6] has been proven to
be very effective in ASC.

In this paper, we propose to use convolutional recurrent neural
networks (CRNN) for ASC. Convolutional layers of CRNN extract
local, small shift-invariant features from a time-frequency represen-
tation of the acoustic sample. Meanwhile, gated recurrent layers of
CRNN utilize the cues extracted from the features of the previous

frames that are relevant to the given task. ASC often requires this
sort of long term temporal modeling, as the acoustic scenes are de-
fined by the collection of several sound events happening during
different time periods of the acoustic samples. This CRNN method
has not been utilized before for ASC but has proven its efficiency
for other tasks as sound event detection [7].

The remaining of the article is organized as follows. The acous-
tic features used to represent the signals and the CRNN architecture
is addressed in Section 2. The Section 3 presents the acoustic ma-
terial, the evaluation metrics and the evaluation results compared to
the baseline system of the DCASE 2017 ASC challenge. Last, the
conclusions of the authors are exposed in Section 4.

2. METHOD

This method has been developed for the task 1 of DCASE 2017
challenge. The goal of this task was to classify a test recording
into one of the 15 predefined class (beach, bus, office etc.) that
characterize the environment where it was recorded.

2.1. Acoustic features

The acoustic features used in this work are log mel-band energies,
similar to the SED task described in [7]. Each audio sample is di-
vided into 40 ms frames with 50% overlap and 40 log mel-band
energy features are extracted for 501 frames per acoustic sample.

2.2. CRNN Architecture

The CRNN architecture chosen for this work is composed of three
main blocks : (1) convolution block, (2) recurrent block, (3) clas-
sification block. An illustration of the architecture is presented in
Figure 1. The input of the network is the acoustic features (log-mel
band energies here) of an audio sample.

In the convolution block, the input is fed to Lc consecutive
convolutional layers with 5-by-5 feature maps and linear activa-
tion functions. We use same convolution in each layer, i.e. the
input features are padded with the zeros to the length of the feature
map, so that the size of the convolutional layer outputs is not re-
duced due to convolution operation. Each convolutional layer is fol-
lowed by batch normalization [8] per feature map, a rectified linear
unit (ReLU) activation function, a dropout layer [9] with dropout
probability of 0.25, and a frequency domain max-pooling layer. At
the end of the convolutional block, the extracted features over the
CNN feature maps are stacked along the frequency axis, i.e. the
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Figure 1: Overview of the submitted CRNN method. (1): Multiple
convolutional layers with max-pooling and stacking of the features
over frequency axis, (2):Multiple stacked recurrent layers, (3):Tem-
poral max-pooling and Softmax layer permits to classify the audio
sample into one class, just with one vector.

features extracted by all the feature maps of the last convolutional
layer are concatenated into a single feature vector for each frame.

In the recurrent block, these stacked features are fed to Lr GRU
layers where tanh and hard sigmoid activation functions are used
for update and reset gates, respectively. Dropout with probability
0.25 is applied on both the inputs and the recurrent outputs of the
recurrent layer.

Finally, in the classification block, a temporal max-pooling
layer is used to obtain one output per last GRU layer hidden unit
that represents all the frames in the acoustic sample. The output
of this layer is then fed to a feed-forward network of 15 units (1
unit per class) with softmax activation function as the classification
layer. The outputs of the classification layer are regarded as the
probabilities of the sample to belong to a class (given that one unit
corresponds to one class). If the method is to be evaluated or uti-
lized in a usage case, the acoustic sample is estimated to belong to
the class with the highest probability.

2.3. Procedure and Final Configuration

The CRNN is trained using Adam method for gradient based op-
timization [10]. Binary cross-entropy is used as the cost function,
and the network is trained for a maximum of 200 epochs. Early

Table 1: Hyper-parameters of the model (CRNN-1) used for the
challenge, determined with the grid search.

Parameters Chosen Model

Lc 3
Lr 2

Pool Size (2, 2, 2)
#Filters/Hidden Units 96

#Parameters 688K

stopping is used with a patience of 25 epochs and a delta of 0.001,
which means that the training is prematurely stopped if the binary
accuracy did not improve at least for 0.1% during 25 consecutive
epochs. We keep the model from the epoch with the maximum val-
idation accuracy after training.

In order to decide which architecture to use for our chal-
lenge submission, we run a hyper-parameter grid search and pick
the architecture which gives the highest classification accuracy in
the test set of the development data (see Section 3.1). The grid
search covers the number of CNN feature maps / GRU hidden units
{32,96,160} (both are set to the same value); the number of convo-
lutional and recurrent layers {1,2,3,4} (Lc can be different from
Lr); and the frequency max-pool sizes after each convolutional
layer {(8); (5, 4); (2, 2, 2); (5, 2, 2); (5,4, 2); (5, 2, 2, 1); (5, 2,
2, 2)}. The final hyper parameters of the network are listed in Table
1. This method is referred in this paper as CRNN-1.

We also decided to pick the seven best architectures (in terms
of test accuracy on the development set) and to train these networks
with the whole data from development set. Then, for each sample
of the test set for the challenge, we do majority voting over test set
outputs of these seven models and get the scene label for the sample.
This method is referred as CRNN-2.

3. EVALUATION

3.1. Acoustic Material

The acoustic material used for this task consists of 10-second seg-
ments. These segments have been created by splitting 3-5 minutes
long segments recorded in different scenes. The dataset is divided
into two subsets : development set and evaluation set. The develop-
ment set is actually the complete DCASE 2016 dataset for the same
task. The evaluation dataset is made of newly recorded segments.
Segments obtained from the same original recording are in the same
set. Each class is provided with 312 of these segments. The devel-
opment dataset is thus composed of 4680 segments, split into 3075
training, 435 validation and 1170 test segments. More details about
the dataset can be found in [11].

3.2. Baseline

In this work, we will compare the performance of our two CRNN
based methods with two baseline methods using deep learning with
the same input features. The first method is a feed-forward neural
network (FNN) with two hidden layers of 50 neurons. This is also
the official baseline method of the challenge. The second baseline
method is a CNN whose architecture has been selected through the
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Table 2: Average scene accuracy over four folds for the baseline
FNN, the two CRNN based methods and a simple CNN on the de-
velopment dataset.

Accuracy

Scene FNN CNN CRNN-1 CRNN-2

beach 75.3 71.2 72.4 77.9
bus 71.8 91.0 95.8 96.8
cafe/restaurant 57.7 67.9 64.1 70.2
car 97.1 89.1 91.3 92.9
city center 90.7 93.3 93.6 93.6
forest path 79.5 98.1 94.9 96.8
grocery store 58.7 84.3 82.7 86.5
home 68.6 63.8 68.6 65.7
library 57.1 77.2 72.1 73.4
metro station 91.7 89.7 93.6 93.3
office 99.7 87.8 89.4 88.5
park 70.2 63.8 64.7 69.6
residential area 64.1 72.8 64.4 68.6
train 58.0 46.5 61.2 55.1
tram 81.7 79.8 74.7 83.3

Overall accuracy 74.8 78.4 78.9 80.8

same grid search approach as explained in Section 2.3, while re-
placing the recurrent layers with feed-forward layers that apply the
same set of weights on the features in each frame.

3.3. Metrics

The official metric used in the ASC challenge is accuracy, which is
defined as the ratio between the number of correct system outputs
and the total number of outputs. The system is always tested with
the provided four fold cross-validation setup.

3.4. Results

The results on the development set can be found in Table 2. The
authors acknowledge that the conclusions/comments in this section
have been made based on the assumption that the results over the
test sets of development and evaluation datasets would show similar
characteristics, and this section will be updated once the evaluation
results are published.

The two CRNN methods have the best accuracy of the four
methods, but just shows a little improvement compared to the
FNN (4.1% and 6% respectively), and what we can call an in-
cremental improvement when compared to the CNN (0.5% &
2.4%). Consequently, the CRNN-2 method is more accurate than
the CRNN-1, scoring the best overall accuracy of 80.8%. More-
over, the CRNN-1 method does not make the best scores for every
classes, even being overtaken by the FNN which make the best score
for four of the classes (three for the CNN and four for the CRNN-
1).The CRNN-2 also make the best score for six classes (different
from the FNN’s best classes).

4. CONCLUSIONS

In this paper, the authors have proposed two different ways of deal-
ing with the task of Acoustic Scene Classification using CRNN net-
works. This methods show an accuracy improvement compared to a
two-layers FNN and a simple CNN. However, these improvements
are less important than what we expected, the CRNN method be-
ing proven very efficient in other audio related tasks. In the future,

enhancements could be made by changing some parameters of the
training or by finding an alternative to a simple network, as our pro-
posed method CRNN-2.
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