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ABSTRACT

This paper describes our method submitted to large-scale weakly
supervised sound event detection for smart cars in the DCASE Chal-
lenge 2017. It is based on two deep neural network methods sug-
gested for music auto-tagging. One is training sample-level Deep
Convolutional Neural Networks (DCNN) using raw waveforms as
a feature extractor. The other is aggregating features on multi-
scaled models of the DCNNs and making final predictions from
them. With this approach, we achieved the best results, 47.3% in
F-score on subtask A (audio tagging) and 0.75 in error rate on sub-
task B (sound event detection) in the evaluation. These results show
that the waveform-based models can be comparable to spectrogram-
based models when compared to other DCASE Task 4 submissions.
Finally, we visualize hierarchically learned filters from the chal-
lenge dataset in each layer of the waveform-based model to explain
how they discriminate the events.

Index Terms— Sound event detection, audio tagging, weakly
supervised learning, multi-scale features, sample-level, convolu-
tional neural networks, raw waveforms

1. INTRODUCTION

Understanding the sounds of everyday life has received great at-
tention in recent years due to its practical applications such as the
hearing impaired, smart cars and smart appliances [1, 2, 3, 4, 5].
Among others, Sound Event Detection (SED) is a particularly chal-
lenging task because it predicts not only possible descriptive words
of environment sounds but also their start and end times. Most
SED systems are based on hard annotated data where both event
classes and their timestamps are present [4, 6, 7, 8, 9]. However, it
is time-consuming and expensive to construct a large dataset with
such labels and so this has limited the use of highly data-driven
learning algorithms such as deep neural networks. To take account
of this problem, Detection and Classification of Acoustic Scenes
and Events (DCASE) Challenge 2017 has opened a new task [5]:
Large-scale weakly supervised sound event detection for smart cars
where subtask A is audio tagging and subtask B is sound event de-
tection. Especially for subtask B, the objective is to construct novel
SED system based on a dataset without timestamps.

Recent deep learning based SED systems that use timestamps
information can be divided into two approaches. One is using the
sequence information to predict the order of the timestamps, for
example, using Recurrent Neural Networks (RNN) [6, 7]. The other
is dividing an audio clip into the same length of small segments (e.g.
1 second long) and using the segments as input for the models, for

example, using Deep Neural Networks (DNN) [4] or Convolutional
Neural Networks (CNN) [9]. This segmentation-based approach
does not use sequence information, but it can capture local audio
characteristics well [4, 9]. The effectiveness was shown in many
audio tagging tasks [2, 10, 11, 12]. The main difference is that
segments in the SED systems have their own labels depending on
the presence of events at the moment whereas those in audio tagging
systems are annotated with the same labels as long as they are from
the same audio file.

For the weakly supervised SED task, we mix the two settings.
That is, in training phase, we use the same labels for all segments
within an audio file whereas, in test phase, we regard the outputs for
segments as separate event predictions. With this setting, we can
apply some of the methods developed primarily for audio tagging
to the weakly supervised SED task. In the following sections, we
describe the methods and show that the approach is effective in our
target task.

2. PROPOSED METHOD

2.1. Combination of Multi-Scale Features

Event sounds have different timbre patterns in terms of feature hi-
erarchy and time-scales [13, 11]. For example, bicycle and motor-
cycle sounds are generated as a repetition of specific sound sources.
They tend to be local and repetitive within an audio clip. On the
other hand, car and train sounds are more sustained or ambient.
They are relatively more global and require longer audio segments
to discriminate them. We previously addressed the issue by using
multiple CNNs, each of which covers different time scales [11, 14].
The proposed method is performed in three steps: feature learn-
ing by multiple CNNs, feature aggregation, and final classification.
The CNNs are trained with the sound labels, taking different input
sizes to capture both local and global characteristics of the sounds.
We then use these trained networks as a feature extractor. Since
these feature extractors are trained with different input sizes, these
can capture different audio characteristics. After the features are
extracted, we summarize them for the given task-specific format.
For example, for the audio tagging task, we summarize segment-
level features to audio-clip-level by averaging the whole segment
features. For the SED task, segment-level features are averaged ev-
ery second. Lastly, the final prediction is performed using a fully-
connected neural network for each subtask.
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Figure 1: Feature aggregation method for subtask A of Task 4 (au-
dio tagging). The features of models with different input sizes are
concatenated.

2.2. Sample-level Deep Convolutional Neural Networks

Using raw audio as input allows the network to learn very low-level
features. Generally, in audio classification tasks, raw waveforms are
converted to a time-frequency representation before used as input to
the system. However, in this preprocessing stage, short-time Fourier
transform (STFT) parameters, such as hop size or window size, are
often ignored in parameter optimization even though optimal pa-
rameters for each sound class may vary [15, 16]. To take account of
this and also to avoid exhausting parameter search, we used the pre-
viously proposed network as a feature extractor which learns from
raw waveforms with very small sample-level filters [14].

3. EXPERIMENTS

3.1. Datasets

The DCASE Challenge 2017 Task4 uses a subset of AudioSet [2].
This subset consists of 17 sound events and the classes are unbal-
anced and multi-labeled. The task setup comes with training, test-
ing and evaluation set. The split includes 51172, 488, and 1103
audio clips, respectively. Because the evaluation set is saved for the
challenge evaluation, we split the training set by randomly selecting
10% of audio clips for each class and using them as a validation set.
Since the audio clips are multi-labeled, we in fact selected more
than 10% audio clips per class. As a result, the sub-training set
consists of 45313 clips and the validation set contains 5859 clips.

3.2. CNN Models

We followed CNN model configuration and training settings in our
previous work [15]. For example, all audio clips are segmented ac-
cording to the network input size and each segment is used as a sin-
gle sample for training with its corresponding event labels. We used
a total of eight CNN models with different lengths of waveforms
as inputs from 372ms, 557ms, 627ms, 743ms, 893ms, 1486ms,
2678ms and up to 3543ms. After the networks are trained, they
can directly predict the results of subtask A and subtask B. This is
termed as Sample level Deep Convolutional Neural Networks (SD-
CNN) in our experiment.

The difference from the previous work is that the audio sam-
pling rate increased by a factor of 2 (i.e. 44100 Hz) and the model

Figure 2: Feature aggregation method for subtask B of Task 4
(sound event detection). The features of models with different input
sizes are concatenated.

size is expanded accordingly (11 to 16 convolution layers and 128 to
512 filters). Also, since we measure detection performance rather
than ranking, we predicted the presence of tags with a threshold
value. In the SDCNN model, we used 0.1 for the tagging task and
0.5 for the SED task.

3.3. Feature Aggregation and Final Classification

We also used the trained CNN models as a feature extractor instead
of using their prediction results, following the multi-level and multi-
scale feature aggregation approach [11]. By multi-level features, we
mean to use top three hidden layers in the sample-level CNN mod-
els. The purpose of using multi-level features is considering various
abstraction levels of the sound tags. Although the tag descriptions
are limited to smart cars and so the diversity in feature hierarchy is
not strong, we put the multi-level concatenation in our experiment.

For the tagging task, the features of all segments are averaged
into a single feature vector for each model as shown in Figure 1.
We then combined multi-scaled features and fed them into a fully
connected layer for final decision. For the SED task, we summa-
rized the features every second as depicted in Figure 2. If the input
length of the CNN model is less than one second, we computed the
number of segments by dividing one second by the input size and
rounding it up, and overlapped adjacent segments such that all seg-
ments fit within one second. We then averaged the features from
segments as a single vector. If the input length exceeds one second,
we extracted a single feature only. We then move the model by one
second for next event detection. Finally, we fed the features into a
fully connected layer to make a final decision for each period. We
term this setup as Multi-Level Multi-Scale (MLMS) model. In all
MLMS models, we used a threshold of 0.2 for tagging predictions
and 0.5 to SED predictions to make a final decision.

3.4. List of Submissions

Based on the experimental setup above, we submitted four settings
of models or DCASE Challenge 2017 Task 4 (Large-scale weakly
supervised sound event detection for smart cars) as follows:

• SDCNN: Sample-level Deep Convolutional Neural Networks
that takes 893ms of audio as input. This is one of the models
used as a feature extractor for the rest submissions.
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Table 1: The class-wise performance of submitted systems and their comparisons on the development set. In the middle section, we show the
results with multi-level only (termed as ML) to observe the sensitivity of tag prediction to different input sizes (the numbers after ML). When
the performance of a tag has a trend according to the input size, we highlighted the tag and the value of the optimal input size.

Subtask A
F-score SDCNN893 ML372 ML557 ML627 ML743 ML893 ML1486 ML2678 ML3543 MLMS5 MLMS3 MLMS8

Train horn 48.7 22.8 32.4 36.8 26.3 28.5 33.3 36.8 27.0 47.6 41.0 41.0
Air horn, truck horn 43.9 27.7 27.7 27.8 31.5 35.9 22.8 17.1 37.8 35.0 36.8 41.0
Car alarm 27.7 0.0 6.4 0.0 6.4 0.0 0.0 0.0 0.0 6.4 0.0 0.0
Reversing beeps 40.0 6.5 18.1 12.5 23.5 28.6 28.6 18.2 12.5 18.1 33.3 18.2
Ambulance (siren) 40.0 21.6 24.4 40.9 29.2 34.1 15.8 21.6 10.8 50.9 27.9 36.4
Police car (siren) 44.6 38.6 43.6 43.2 44.4 46.3 41.3 44.9 47.1 42.9 46.6 43.9
Fire engine, fire truck (siren) 40.8 43.5 43.4 42.0 44.0 42.4 44.9 42.8 46.9 46.8 40.4 42.2
Civil defense siren 67.4 78.8 77.1 76.7 80.0 77.7 77.6 74.6 72.7 77.8 73.2 76.7
Screaming 52.6 40.9 41.6 47.8 48.9 50.0 48.9 36.7 44.9 53.1 39.1 48.0
Bicycle 42.5 58.1 58.0 52.3 55.1 48.5 56.1 55.7 44.8 53.1 45.6 61.0
Skateboard 71.4 71.1 70.0 72.4 75.0 80.0 72.4 73.3 71.2 77.2 73.7 71.4
Car 23.1 30.7 30.3 32.3 30.7 32.9 32.1 33.5 31.8 32.8 33.8 35.0
Car passing by 19.0 5.7 4.9 12.7 14.6 13.6 23.2 12.8 23.5 13.0 10.0 16.6
Bus 29.6 26.1 37.0 38.2 33.3 37.0 31.7 34.5 32.5 34.6 30.0 33.3
Truck 32.9 42.8 40.7 41.1 42.9 41.1 41.8 44.5 43.9 43.0 42.7 40.4
Motorcycle 53.8 61.0 54.2 52.8 52.6 46.6 49.1 54.5 46.1 53.3 46.4 57.6
Train 61.2 58.4 62.2 64.4 62.9 64.4 65.2 63.7 62.5 67.3 68.8 68.1
Subtask B
ER
Train horn 0.85 0.90 0.93 0.90 0.92 0.85 0.93 0.91 0.90 0.84 0.91 0.87
Air horn, truck horn 0.82 0.86 0.91 0.86 0.90 0.81 0.93 0.88 0.92 0.82 0.89 0.85
Car alarm 0.97 0.94 0.97 0.98 0.96 0.97 0.92 0.98 0.97 0.95 0.96 0.95
Reversing beeps 0.91 0.98 0.92 0.92 0.92 0.92 0.92 0.91 0.90 0.91 0.94 0.88
Ambulance (siren) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Police car (siren) 1.12 1.14 1.09 1.16 1.15 1.04 1.23 1.16 1.13 1.15 1.11 1.09
Fire engine, fire truck (siren) 0.98 0.95 0.99 1.00 0.99 0.98 0.98 1.00 1.00 1.01 0.99 0.97
Civil defense siren 0.58 0.60 0.61 0.62 0.63 0.58 0.63 0.62 0.64 0.62 0.59 0.59
Screaming 0.93 0.95 0.95 0.95 0.95 0.91 0.94 0.94 0.98 0.92 0.91 0.91
Bicycle 0.87 0.87 0.90 0.86 0.85 0.91 0.96 0.96 0.95 0.90 0.88 0.91
Skateboard 0.80 0.78 0.80 0.75 0.78 0.80 0.81 0.83 0.81 0.73 0.79 0.72
Car 3.32 3.29 3.66 2.83 3.42 3.03 3.62 3.29 2.82 3.00 3.00 2.85
Car passing by 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bus 1.03 1.00 1.01 1.02 1.01 1.00 1.00 1.02 0.99 1.03 1.01 0.98
Truck 0.96 0.90 0.97 0.95 0.97 0.92 0.97 0.95 0.95 0.92 0.98 0.95
Motorcycle 0.92 0.90 0.97 0.91 0.91 0.94 0.99 0.91 0.96 0.95 0.91 0.93
Train 0.93 0.92 0.95 0.95 0.95 0.94 0.94 0.90 0.89 0.94 0.93 0.92

• MLMS5: Multi-Level and Multi-Scale features extracted from
models taking 372ms, 557ms, 627ms, 743ms and 893ms as
input.

• MLMS3: Multi-Level and Multi-Scale features extracted from
models taking 1486ms, 2678ms, and 3543ms as input.

• MLMS8: Multi-Level and Multi-Scale features extracted from
models taking 372ms, 557ms, 627ms, 743ms, 893ms, 1486ms,
2678ms, 3543ms as input.

Details about the models can be found in our DCASE submis-
sion webpage link1.

4. RESULTS AND DISCUSSION

4.1. Evaluation on the Development set

We report the performance of the proposed method in Table 2 (tag-
ging) and Table 3 (SED). From the results, we can find that the
feature aggregation and final classification stage improve perfor-
mance compared to the direct result of SDCNN. Also, as the num-
ber of model combinations increases, the performance is generally
improved as well.

1https://github.com/jongpillee/dcase2017submission

Table 2: Instance-based results of submitted systems for subtask A
of Task 4 (audio tagging)

Development set Evaluation set
F-score Prec. Rec. F-score Prec. Rec.

SDCNN 37.8% 26.7% 64.8% 40.3% 31.3% 56.7%
MLMS5 44.3% 38.8% 51.7% 47.3% 48.0% 46.6%
MLMS3 42.2% 39.0% 45.9% 47.2% 49.6% 45.0%
MLMS8 43.8% 39.2% 49.5% 47.1% 48.5% 45.9%

Table 3: Instance-based results of submitted systems for subtask B
of Task 4 (sound event detection)

Development set Evaluation set
ER F-score ER F-score

SDCNN 0.88 28.1% 0.82 39.4%
MLMS5 0.86 30.7% 0.78 42.6%
MLMS3 0.86 31.2% 0.78 44.2%
MLMS8 0.84 34.2% 0.75 47.1%

We report class-wise performance as well on Table 1. From
the class-wise tagging results, we can find the sensitivity of tags to
different time scales. For example, tags such as Reversing beeps,
Ambulance (siren), Screaming, Civil defense siren and Skateboard
are optimal around one second. On the other hand, Bicycle and Mo-
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Figure 3: Spectrum of the filters in the sample-level convolution layers which are sorted by the frequency at the peak magnitude. The x-axis
represents the index of the filters and the y-axis represents the frequency. The visualization was performed using a gradient ascent method to
obtain the input waveform that maximizes the activation of a filter in the layers [15].

Figure 4: Visualization of aggregated features with Train tags and
Motorcycle tags using t-SNE in the training set. Each dot corre-
sponds to one audio clip. The green dots indicate those belonging
to the tag denoted in the left side. ML372 indicates the model with
multi-level features and 372ms as input.

torcycle favor shorter seconds, and Police car (siren), Car passing
by, Bus and Train prefer longer seconds. These trends can also be
observed in Figure 4 where we displayed 2-D embedding space of
aggregated features in the ML models using t-Distributed Stochas-
tic Neighbor Embedding (t-SNE). We can see that audio clips with
Train tags are more closely clustered in ML3543 whereas those
with Motorcycle tags are more in ML372. This may explain why
combining multi-scale features improves the performance. Also,
in Table 1, we can find that SCDNN shows good results in class-
wise performance. Especially when the sound is alarming ones,
for example, Car alarm, Reversing beeps, Ambulance (siren) and
Police car (siren). However, the MLMS models achieve better per-
formance on instance-based metrics as shown in Table 2 and 3. This
is probably because about half of the dataset have car tags and the

MLMS models tend to improve the performance for those with the
car tags significantly.

4.2. Comparison with other submissions in DCASE 2017

Nine teams submitted their algorithms to subtask A and seven teams
to subtask B in the DCASE2017 Task 4. Our team was ranked at
the 5th for subtask A and at the 3rd for subtask B. Most submit-
ted algorithms used mel-scaled spectrogram as input and CNN as a
classifier. These results show that our model using raw waveform
as input can be comparable those using spectrogram.

4.3. Filter Visualization of SDCNN

We visualize learned filters on each layer in the sample-level CNN.
Figure 3 shows the filers obtained from a gradient ascent method
[15] and sorted with the frequency at the peak magnitude. We can
observe that they are sensitive to more log-scaled in frequency as
the layer goes up. Compared to the learned filters from music audio
3, these filters tend to have more low-frequency concentration and
less complex patterns.

5. CONCLUSIONS

In this paper, we presented sample-level DCNN models using raw
waveforms and multi-scale feature aggregation method developed
for the DCASE Challenge 2017. We showed that our proposed
method is comparable to CNN-based models using spectrogram
as input. Class-wise performance and feature visualization indi-
cate that audio clips with different tags are optimal in different time
scales. Combining the multi-scaled features improves overall per-
formance. We also visualized hierarchically learned filters in the
sample-level CNN. They showed the spectral patterns are adapted
to the characteristic of the acoustic scene sounds.
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