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ABSTRACT 

In this report, we present our works about three tasks of IEEE 
AASP challenge on DCASE 2017, i.e. task 1: Acoustic Scene 
Classification (ASC), task 2: detection of rare sound events in 
artificially created mixtures and task 3: sound event detection in 
real life recordings. Tasks 2 and 3 belong to the same problem, 
i.e. Sound Event Detection (SED). We adopt deep learning tech-
niques to extract Deep Audio Feature (DAF) and classify vari-
ous acoustic scenes or sound events. Specifically, a Deep Neural 
Network (DNN) is first built for generating the DAF from Mel-
Frequency Cepstral Coefficients (MFCCs), and then a Recurrent 
Neural Network (RNN) of Bi-directional Long Short Term 
Memory (Bi-LSTM) fed by the DAF is built for ASC and SED. 
Evaluated on the development datasets of DCASE 2017, our 
systems are superior to the corresponding baselines for tasks 1 
and 2, and our system for task 3 performs as good as the base-
line in terms of the predominant metrics.  
Index Terms—DAF, Bi-LSTM, acoustic scene classification, 
sound event detection  

1. INTRODUCTION 

ASC is a process of determining a test audio recording belongs to 
which pre-given class of acoustic scenes, while SED is a process 
of labeling temporal regions within a test audio recording and 
resulting in a symbolic description such that each annotation 
gives the timestamps and sound event labels. Although ASC and 
SED are different in their specific steps, they can be regarded as 
the same task of audio representation and classification. Hence, 
they can be tackled by using the same feature and classifier. Both 
of them are useful for multimedia retrieval [1], audio-based sur-
veillance and monitoring [2, 3]. What’s more, they are under 
great attention of the research community with many evaluation 
campaigns [4-8], and are not effectively solved due to large vari-
ations of time-frequency characteristics within each class of 
sound events and acoustic scenes, non-stationary background 
noises, overlapping of sound events, and so forth [9].  
        The overall performance of audio classification system 
mainly depends on two stages: feature extraction and classifier 
building. Almost all of recent studies focused on these two stages 
for achieving better performance [10]. Many systems were sub-
mitted to the DCASE 2016 challenge for ASC and/or SED, and 
some of them achieved satisfactory results. They were based on 
the combinations of various features with different classifiers. 
The features include MFCCs, log Mel-band energy, spectrogram, 
Gabor filterbank, pitch, time difference of arrival, amplitude 

modulation filterbank, while the classifier mainly consists of 
Gaussian mixture model, Deep Convolutional Neural Network 
(DCNN), RNN, time-delay neural network, logistic regression, 
random forest, decision tree, gradient boosting, support vector 
machine, hidden Markov model. For example, Eghbal-Zadeh et 
al [11] proposed a novel I-vector extraction scheme for ASC 
using both left and right audio channels, and proposed a DCNN 
architecture trained on spectrograms of audio excerpts in end-to-
end fashion. Their submissions achieved ranks first and second 
among 49 submissions in the ASC task of DCASE 2016 chal-
lenge. Adavanne et al [12] used spatial and harmonic features in 
combination with LSTM RNN for SED. Their method improved 
the F-score by 3.75% while reducing the error rate by 6% com-
pared with the baselines.  
        Although so many systems have been proposed for ASC 
and SED, to the best of our knowledge, there is no system by 
combining the DAF for audio representation with the Bi-LSTM 
for audio classification. In our submissions for DCASE 2017, we 
propose to build a DNN for extracting the DAF based on MFCCs, 
and then feed the DAF into a classifier of Bi-LSTM for ASC and 
SED. The rest of this report is organized as follows. Section 2 
describes the proposed method and Section 3 presents experi-
ments. Finally, conclusions are drawn in Section 4. 

2. THE METHOD 

The proposed framework for ASC and SED is depicted in Figure 
1, which mainly consists of two modules: DAF extraction and 
Bi-LSTM classification. For task 1(i.e. ASC), the audio record-
ings of each acoustic scene are fed into the system and the labels 
of acoustic scene are output by the system. For tasks 2 and 3 (i.e. 
SED in artificially-created and real-life recordings), the audio 
recordings containing the target sound events are fed into the 
system and the target sound events are detected by the system.  
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Figure 1: The proposed framework for ASC and SED.  

2.1. DAF extraction 

The proposed DAF is used for representing the properties of 
different acoustic scenes and sound events, whose extraction is 
illustrated in Figure 2. Each audio recording is split into frames 
for extracting MFCCs, and then a DNN feature extractor is built 
for extracting bottleneck feature (i.e. DAF) based on MFCCs. 
The DAF is output from the bottleneck layer of the DNN. 
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Figure 2: The DAF extraction. 
 

The MFCCs is the most popular feature for audio classifi-
cation in the previous studies [7], and is used as a component for 
extracting the DAF here. The details of both the MFCCs extrac-
tion and the DNN building (including its training and parameters 
settings) are all discussed in our previous work [10]. 

2.2. Bi-LSTM classification 

A RNN has feedback connections and works efficiently and flex-
ibly with time-series signals such as audio signal. Due to the 
exploding and vanishing gradient problem, a simple RNN is not 
easy to train, and not able to deal with long-range dependencies 
[13]. Hidden units of gated RNN are gate-based. Two common 
classes of Gated RNNs are LSTM and Gated Recurrent Units 
(GRUs), and the LSTM has been widely used. The introductions 
about LSTM and GRU are given in [14] and [15], respectively. 

LSTM is very flexible in classifying sequential data in both 
cases of sequence-to-one classification and sequence-to-sequence 
classification. A Bi-LSTM has a second hidden layer that learns 
input sequence in an inverse direction, which is expected to yield 
better prediction since information for prediction at each time-
step is from both the backward and forward directions. Hence, 
we use the Bi-LSTM as classifier for both ASC and SED. 

3. EXPERIMENTS 

Our experiments are mainly performed on the TensorFlow [16]. 
We build three systems for tasks 1 to 3, respectively. The details 
about datasets, performance metrics and baseline systems are 
given in [8]. The predominant performance metrics for tasks 1, 2 
and 3 are classification accuracy, event-based and segment-
based error rates, respectively. The configurations for the DAF 
extraction and the Bi-LSTM building are listed in Table 1.  

Table 1: The configurations for the DAF extraction and Bi-
LSTM building. 

DAF extraction  
MFCC Dimension: 13, frame length/overlap: 40/20 ms. 
DNN DAF dimension: 50, learning rate: 0.001, maxi-

mum iterations: 3000, batch size: 256, context 
size: 7 frames, number of hidden layers: 5, weight 
decay: 0.1, dropout: 0.8, neurons of hidden layer: 
[200 100 50 100 200], output layer function: Sig-
moid. 

Bi-LSTM building 
Bi-
LSTM 

Cell number: 400, learning rate: 0.001, iterations: 
300, batch size: 256, unrolled steps: 7, training 
algorithm: back-propagation through time, initial 
forget bias: 1. 

3.1. Task 1: acoustic scene classification 

The goal of acoustic scene classification is to classify a test re-
cording into one of the predefined classes that characterizes the 
environment in which it is recorded for example “park”, “home”, 
“office”. Table 2 shows average results over 4 folds obtained by 
our system and the baseline [8]. Our system achieves an overall 
average classification accuracy of 91.0% which is higher than 
73.8% obtained by the baseline. 

Table 2: Acoustic scene classification results on development 
dataset (average over 4 folds). 

Acoustic scene 
Classification accuracy (%) 

Baseline Ours 
Beach 77.6 93.5 
Bus 83.7 82.1 

Cafe/Restaurant 55.1 91.5 
Car 86.2 97.6 

City center 88.5 94.9 
Forest path 83.3 91.0 

Grocery store 63.1 87.1 
Home 74.5 97.4 

Library 60.6 69.2 
Metro station 88.5 97.4 

Office 97.4 97.5 
Park 64.4 90.0 

Residential area 62.8 87.2 
Train 38.1 89.7 
Tram 82.7 98.7 

Overall 73.8 91.0 

3.2. Task 2: detection of rare sound events in artificially cre-
ated mixtures 

Task 2 focuses on the detection of rare sound events. The audio 
material used in this task consists of artificially created mixtures, 
allowing the creation of many examples at different event-to-
background ratios. Here, “rare” refers to target sound events 
occurring at most once within a half-minute recording [8]. Table 
3 shows average results obtained by our system and the baseline 
[8]. Our system obtains an overall average event-based error rate 
of 0.55 which is lower than 0.57 obtained by the baseline. 

Table 3: Average results of detection of rare sound events in 
artificially created mixtures on development dataset.  

Sound 
event 

Event-based metrics 
Baseline Ours 

Error rate F-score Error rate F-score
Baby cry 0.79 68.1% 0.77 67.6% 

Glass break 0.21 89.0% 0.35 82.8% 
Gun shot 0.72 55.1% 0.54 67.2% 
Average 0.57 70.7% 0.55 72.5%

3.3. Task 3: sound event detection in real life recordings 

Task 3 evaluates the performance of sound event detection sys-
tems in multisource conditions similar to our everyday life, 
where the sound sources are rarely heard in isolation. Six prede-
fined sound event classes are selected, and systems are expected 
to detect the presence of these sounds, providing labels and 
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timestamps to segments of the test audio [8]. Table 4 shows av-
erage results obtained by our system and the baseline [8]. Our 
system achieves an overall average segment-based error rate of 
0.69 which is equal to the counterpart obtained by the baseline. 

Table 4: Results of sound event detection in real life audio on 
development dataset.  

Sound 
event 

Segment-based metrics 
Baseline Ours 

Error rate F-score Error rate F-score
Overall 0.69 56.7% 0.69 54.5%

4. CONCLUSIONS  

In this report, we have introduced our systems submitted to the 
IEEE AASP challenge on DCASE 2017 and presented the sys-
tems performance on the development datasets of tasks 1, 2 and 3. 
In terms of the predominant performance metrics, the results 
have showed that our systems for tasks 1 and 2 outperform the 
corresponding baselines, and the performance of our system for 
task 3 is the same as that of the baseline. 
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