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ABSTRACT

Rare sound event detection is a newly proposed task in IEEE
DCASE 2017 to identify the presence of monophonic sound event
that is classified as an emergency and to detect the onset time of
the event. In this paper, we introduce a rare sound event detec-
tion system using combination of 1D convolutional neural network
(1D ConvNet) and recurrent neural network (RNN) with long short-
term memory units (LSTM). A log-amplitude mel-spectrogram is
used as an input acoustic feature and the 1D ConvNet is applied in
each time-frequency frame to convert the spectral feature. Then the
RNN-LSTM is utilized to incorporate the temporal dependency of
the extracted features. The system is evaluated using DCASE 2017
Challenge Task 2 Dataset. Our best result on the test set of the de-
velopment dataset shows 0.07 and 96.26 of error rate and F-score
on the event-based metric, respectively. The proposed system has
achieved the 1st place in the challenge with an error rate of 0.13 and
an F-Score of 93.1 on the evaluation dataset.

Index Terms— Rare sound event detection, deep learning, con-
volutional neural network, recurrent neural network, long short-
term memory

1. INTRODUCTION

Auditory information helps people recognize their surroundings. In
an emergency situation, auditory information becomes even more
important as it allows nearby people to react effectively and quickly.
Rare sound event detection (RSED) is a set of algorithms that aim to
automatically detect certain emergency sounds with high accuracy.
As part of such efforts, task 2 in Detection and Classification of
Acoustic Scenes and Events (DCASE) 2017 is organized, which
asks to identify the presence of three target events — baby crying,
glass breaking, and gunshot — and their corresponding onset time.

According to its necessity, sound event detection has been stud-
ied extensively in recent years. Some studies aim to recognize
multiple sound events that occur simultaneously (polyphonic) [1],
[2], [3], [4] while others detect one prominent event among mul-
tiple candidates (monophonic) [1], [5], [6], [7]. In the case of an
emergency, monophonic detection is considered as more suitable
approach since the emergency-related sounds scarcely occur simul-
taneously. Hence, detecting single type of sound with high accuracy
is more valuable in such cases.

In terms of algorithms, a number of conventional research
efforts have applied machine learning algorithms such as hid-
den Markov model (HMM) [5], non-negative matrix factorization
(NMF) [8], [9], support vector machine (SVM) [10], and random
forest [7]. Recent approaches use deep learning-based methods us-

ing deep neural network (DNN) [2], convolutional neural network
(ConvNet) [11], recurrent neural network (RNN) [3], [12], and con-
volutional recurrent neural network (CRNN) [4].

In this paper, we apply a hybrid neural network of 1D ConvNet
and RNN with long short-term memory units (LSTM). Frame-wise
log-amplitude mel-spectrogram is fed into our proposed model, and
the model returns the output for every incoming sequence. It makes
possible to estimate a relatively accurate onset time by maintaining
small temporal resolution. This single model is applied to compute
event probability for all three target events. We also conduct exper-
iments with different fixed length input (timestep) and different set
of data mixtures to find the best hyperparameters. We confirm that
our proposed method shows significant improvement in the test set
of TUT rare sound events 2017 dataset compared to the baseline.

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed method. Section 3 shows the experimental
results with TUT rare sound events 2017 dataset. Conclusions are
presented in Section 4. Algorithm description for DCASE 2017
submission is presented in Section 5.

2. PROPOSED METHOD

Fig. 1 shows an overall framework of our proposed method which
consists of four parts: 1) extracting log-amplitude mel-spectrogram
from audio, 2) converting spectral feature with 1D ConvNet, 3) in-
corporating temporal dependency with RNN-LSTM, and 4) deter-
mining the presence and the onset time of audio event with post-
processing.

2.1. Log-amplitude mel-spectrogram

Mel-spectrogram is a 2D time-frequency representation extracted
from an audio signal. It has been recognized as a useful feature
and has been used for various deep learning-based audio analyses.
Unlike normal spectrogram, the frequency components are filtered
with log-scale filter banks to imitate the function of human ears.
It leads compression of high frequency components and helps to
concentrate more on low frequency components.

Considering these advantages of using mel-spectrogram, we
also use it as the input feature of our proposed method. To ex-
tract this feature, a window is applied to an audio signal with a size
of 46 ms, being overlapped with half size of the window. We also
apply 128 mel-filter banks on the spectrum of each frame and take
logarithm on the amplitude. The mel-spectrogram is divided into a
chunk with the size of a timestep (7), and fed into our network.
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Figure 1: Overall framework of the proposed method.

2.2. 1D ConvNet

Many audio contents analysis studies that use 2D input features
such as spectrogram, mel-spectrogram, and mel-frequency cepstral
coefficients (MFCC) apply 2D ConvNet [13], [14], which is often
used for image content analysis. It focuses on the spectral and tem-
poral locality from the audio features to extract meaningful infor-
mation. However, 2D ConvNet-based methods analyze the audio
in chunk-level rather than frame-level. Since the precise estimation
of onset time is necessary for this task, we apply spectral-side 1D
ConvNet that enables frame-level investigation.

The 1D ConvNet step consists of 1D convolution layer, Batch
Normalization (BN) [15] process, and pooling layer. Fig. 2 shows
the concept of the 1D convolution layer and the max-pooling layer.
The filter size of the convolution layer is set to 32, and 128 filters are
used in total. Therefore, 128 outputs each contains 97 (128 —32+1)
elements are produced when single frame of the mel-spectrogram
(128 frequency bin) is fed into the 1D convolution layer. In the next
step, BN is applied on feature map outputs so that they maintain
the mean close to 0 and the standard deviation close to 1. After that,
rectified linear unit (ReLU) [16] is applied as an activation function.
Finally, max-pooling with the size of 97 is applied to each output to
extract representative value. Dropout is also applied with the value
of 0.3 at the end of ConvNet to prevent overfitting.
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Figure 2: 1D-ConvNet structure for frame-wise feature extraction.
The output feature size is same as the input mel-band size at 128.

2.3. RNN-LSTM

RNN has proven to be a powerful model for identifying sequen-
tial information such as speech recognition [17] and hand writing
recognition [18]. In particular, RNN-LSTM is a well-known deep
learning model that prevents vanishing gradient that disturbs long-
term sequence learning [19]. Thus, we use RNN-LSTM here to
incorporate the temporal dependency of the extracted features.

Here, we use two RNN layers each contains 128 LSTM units.
Unlike general studies using forward or bidirectional RNN-LSTM,
we apply unidirectional backward RNN-LSTM. This is because the
information after the onset of an event is appeared to be more im-
portant for the precise onset detection compared to the information
before the onset. According to our experiment, this unidirectional
backward analysis has shown better performance than the other
methods.

Fig. 3 shows the processing structure inside the RNN-
LSTM step. The features extracted from the ConvNet
(x¢, Tt41, ..., xe4-—1) are fed into the networks that passes it
through the layers. Note that the 128-dimensional output vectors
(¢, Z¢+1, .-, Zt+7—1) are obtained for each frame. We use hyper-
bolic tangent (tanh) as an activation function and apply a dropout
rate of 0.3 for all RNN-LSTM layers.

2.4. Fully connected layer and post-processing

The returned features from the RNN-LSTM layer are fed into a fully
connected layer (FC) that contains 128 hidden units. Similar to the
previous 1D ConvNet step, BN and ReLU are applied as a nor-
malization function and activation function, respectively. The up-
dated features are then forwarded to a time-distributed output layer
with one sigmoid unit, of which output represents the probability
of presence of the target sound event. As a result, the probability
values are calculated for each frame of the mel-spectrogram during
the timestep.

In order to obtain the probability sequence of an entire audio
clip at the test stage, sliding ensemble method is utilized. As the
probability values are calculated in each chunk with our trained
model, this method combines the entire probabilities by sliding the
prediction chunk with a hop size of one frame (23 ms) and aver-
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Figure 3: RNN-LSTM structure for sequential learning. Two hid-
den RNN-LSTM layers (h) are applied in a backward direction.
They return the output (2) for all inputs (x) during the timestep (7).

aging the probabilities of the indices where the value exists. An
illustration of this method is shown in Fig. 4.

Fig. 5 shows an example of the determination of event pres-
ence and prediction of its corresponding onset from probability
sequence. In order to determine the presence of a sound event,
hard thresholding scheme with empirical assumptions is used. If
the maximum value in the probability sequence is greater than 0.8
(0.5 for ‘gunshot’), the audio clip is considered to include the tar-
get event. To find the onset time of the sound event, we select the
first index of the value greater than 0.5 among the 50 (200 for ‘baby
crying’) preceding frames from the maximum value.

3. PERFORMANCE EVALUATION

3.1. Dataset

For the task 2 of DCASE 2017, ‘TUT Rare Sound Events 2017’
dataset is provided, which consists of isolated sound events for each
target class and recordings of everyday acoustic scenes to serve as
background. In the dataset, three target sound events are considered:
‘baby crying’, ‘glass breaking’, and ‘gunshot’. The background
audio set contains recordings from 15 different audio scenes, which
are a part of “TUT Acoustic Scenes 2016’ dataset.

The source code for creating a combination of different event-
to-background is also given along with the audio recordings. Us-
ing the code, we can generate training data with different parame-
ters such as number of mixtures, event-to-background ratio (EBR)
and event occurrence probability. Annotations for the mixtures in-
cluding the name of the target event and its temporal position are
also produced automatically. We have created 4 sets of mixtures
(51,52, 53, S4). Each set consists of 15,000 audio clips (5,000 per
event class), generated with EBRs of -6, 0, 6dB and an event occur-
rence probability of 0.5. All mixtures are created as a 30-seconds
monaural audio with 44,100 Hz and 24 bits. For the training, these
mixtures are randomly divided into a train set and validation set at 8
to 2 ratios. Pre-combined test set which contains 1,500 audio clips
(500 per event class) is used at the test process.

3.2. Deep learning setup

In the training stage, after the input chunks are fed into the model
and converted to probability values, errors between the predicted
values and correct values (0 or 1) are calculated with a binary cross
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Figure 4: An example of a sliding ensemble method using a model
with a timestep of 3. The predicted probability sequences from each
sliding window are combined into a single probability sequence in
this way.

entropy as a loss function. To optimize the loss, we apply adaptive
momentum (Adam) as an optimizer and the size of a mini-batch is
set to 256. The learning rate is initially set to be 0.001 and decayed
over each epoch with decaying factor 0.01 of learning rate. Learn-
ing is stopped early when a validation loss has stopped improving
for 10 epochs.

3.3. Evaluation metric

We evaluate our method using event-based metric [20], which re-
quires calculation of true positives (TP), false positives (FP), and
false negatives (FN). If the system’s output accurately predicts the
presence of an event and its onset, it is computed as TP. The onset
time detection is considered true only when it is predicted within
the range of 500 ms of the actual onset time. Meanwhile, FP in-
dicates that the system incorrectly detects the presence of an event
when there is no event. If the system output misses the event, it is
considered an FN. These metrics are used to calculate error rate and
F-score in the final step, which are mathematically defined as

FN+FP
ER_T ()
2PR
= 2
P+ R’ @

where N denotes the total number of samples in the evaluation
dataset, and P and R denote precision and recall, defined as below.

TP
P_TP+FP &
TP
= —— 4
R TP+ FN @

These evaluation metrics were computed using sed_eval toolbox
[20] which is given in the task.
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Figure 5: An example of applying a threshold to detect the presence
and the onset time of an event.

3.4. Result and discussion

We have compared the experimental results by changing the set of
mixtures and timestep. Then we have selected models that show
relatively high-performance, followed by the ensemble method to
combine them. Table 1 shows the types of models combined for an
ensemble method and their mixing weights. p% denotes the proba-
bility value calculated by the trained model using a mixture set of
S, and a timestep size of b. Table 2 shows the event based error
rate and F-score results on the test set of the development dataset.
Both results of our proposed method show better performance than
the DCASE 2017 baseline system.

The result shows that our method achieves the best performance
on ‘glass breaking’ followed by ‘baby crying’ and ‘gunshot’. In the
case of ‘glass breaking’, the frequency component at the moment
when the glass breaks is clear compared to the background sound.
Therefore, the model with short timestep was effective for this class.
In the case of ‘baby crying’, since the length of the sound event
is longer than the others, it was better to apply a relatively longer
timestep. For the same reason, a long frame range to find the onset
time worked better as mentioned in Section 2.4. Still, there existed
misclassified events such as bird sound which has similar tonality to
the baby crying. In the case of ‘gunshot’, relatively short timestep
was used because similar to ‘glass breaking’, the moment of the
gunshot is obvious as it sounds like an impulse. However, since
the gunshot sound has a lot of reverberations, it seemed to require
slightly longer timestep than ‘glass breaking’. The result shows
that the performance of ‘gunshot’ detection is worse than the others
because the sounds vary according to the gun type. For that rea-
son, several misclassifications are observed on impulse-like sound
events such as footstep and metal door-closing sounds. Regardless
of the event class, the onset time was relatively accurate even if the
model estimated the presence of event incorrectly.

Overall, increasing the amount of training data by synthesizing
various mixtures seemed more effective for the performance than
adjusting the parameters of the model. The experimental result
showed meaningful performance improvement when we boosted
the audio clips 10 times more than the given mixture set.

4. CONCLUSION

In this paper, we have presented a rare sound event detection sys-
tem using 1D convolutional recurrent neural networks. It has shown
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Table 1: Selected models and their weights for an ensemble method.

Event Ensemble method
Baby crying (p&wo) + 2pé50) +pg50) +pélOO)) /5
Glass breaking (pgf’) +p§,5)) /2
Gunshot (2,,514) P 00 00 +p5120)) 76

Table 2: Performance of baseline and proposed system in the devel-
opment set.

ER F-score
baseline | proposed || baseline | proposed
Baby crying 0.67 0.05 72.0 97.6
Glass breaking 0.22 0.01 88.5 99.6
Gunshot 0.69 0.16 574 91.6
Overall 0.53 0.07 72.7 96.3

Table 3: Performance of baseline and proposed system in the eval-
uation set.

ER F-score
baseline | proposed || baseline | proposed
Baby crying 0.80 0.15 66.8 92.2
Glass breaking 0.38 0.05 79.1 97.6
Gunshot 0.73 0.19 46.5 89.6
Overall 0.64 0.13 64.1 93.1

promising results on IEEE DCASE 2017 Task 2. We believe that
three key factors in the proposed method have contributed to the
performance improvement. The first factor is frame-wise detection
of the model which is effective in finding the precise onset time.
The second is the internal/external ensemble method used in Sec-
tion 2.4 and Section 3.4 which reduces various noises. The last and
the biggest contributor to the performance improvement is a large
amount of synthesized data consists of various mixtures.

5. DCASE 2017 SUBMISSION

We applied the same model settings of the development set to the
evaluation set. For the final submission, we selected four different
results by applying four different threshold set of event presence
(mentioned in Section 2.4). We used the threshold set with 0.8 / 0.8
/0.5 (‘baby crying’ / ‘glass break’ / ‘gunshot’) for submission 1, 0.7
/0.7 /0.5 for submission 2, 0.6 / 0.6 / 0.5 for submission 3, and 0.5
/0.5 /0.5 for submission 4. The error rate and F-score was 0.13 /
93.1 for submission 1, 0.13 / 93.0 for submission 2, 0.15 / 92.2 for
submission 3, and 0.17 / 91.4 for submission 4. We achieved the
best result with submission 1 and the results of each class from this
submission are shown in Table 3.
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