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ABSTRACT

Sound event detection (SED) aims to detect temporal boundaries of
sound events from acoustic recordings. Sound events in real-life
recordings often overlap with each other (i.e., polyphonic), making
this task difficult. Recently, multi-label recurrent neural networks
(RNNs) have shown promises on polyphonic sound event detec-
tion. However, similar to many other deep learning approaches, the
relative scarcity of carefully labeled data has limited the capacity
of RNNSs. In this paper, we first present a multi label bi-directional
recurrent neural network to model the temporal evolution of sound
events. Secondly, we explore data augmentation techniques that
have shown success in sound classification [[1]. We evaluate our ap-
proach on the development subset of the DCASE2017 task3 dataset
[2]. Combining with data augmentation and ensemble techniques,
we reduce the error rate by over 11% compared to the officially pub-
lished baseline system. In addition, on the final evaluation dataset,
our submitted system won the fourth place among all the 34 sys-
tems.

Index Terms— Sound event detection, recurrent neural net-
works, bidirectional GRU, data augmentation

1. INTRODUCTION

In this work, we intend to deal with the problem of data scarcity.
We mainly have two contributions: first of all, we make use of the
gated recurrent units (GRUs) [3] instead of LSTM cells. Though
GRU cells and LSTM cells perform almost the same in general,
GRU cells are less prone to over-fitting on relatively small datasets
since they have two gates while LSTM cells have three. Secondly,
inspired by the success of data augmentation in sound classifica-
tion tasks [1]], we also exploit the deformation techniques which
are originated from the field of music information retrieval (MIR)
[4]. We conduct experiments on the development dataset of task3
in DCASE2017 following the officially required cross validation
setup and evaluation metrics [S][6]]. Experimental results show that
with the data augmentation techniques, the problem of over-fitting
is greatly reduced. And when we ensemble several models for final
prediction, a reduction of over 11% on error rate is achieved com-
pared to the official baseline system. Our proposed systems also
performed good on the evaluation dataset of task3 in DCASE2017,
we ranked No.3 among the 13 teams.
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Figure 1: Overview of the system: we first extract frame-level fea-
tures given the raw audio signal. Then we feed the features into
the presented bidirectional recurrent neural network for multi-label
prediction. Ensemble and post-processing techniques discussed in
Sect[2|are applied for final sound event outputs.

2. METHOD

The overview of our system is shown in Fig[T} we first extract fea-
tures such as mel-frequency cepstral coefficients (m fcc), log mel-
spectrograms (Ims), pitch frequency (pitch) and the time differ-
ence of arrival of FFT (tdoa) features [7]] from the raw audio data.
In our experiments, sounds from both channels are averaged (except
tdoa features since they make use of both channels) and resampled
to 44100 Hz and all the features are extracted at a hop length of 20
ms to keep consistency (since the frame lengths are feature related,
we introduce them in the following paragraphs). Their concatena-
tions are then fed into our model for prediction. Finally we apply
ensemble and post-processing for sound event outputs.

2.1. Features
We make use of two sets of features described below.

e mfcc, mfecO and Ims: for Ims, we apply hann window and
STFT at a window length of 40 ms. Then, we apply 40-band
mel-scale triangular filter ranging from 0 Hz to 22050 Hz to ob-
tain the 40-dimension Ims; Similarly, we extract 20-dimension
mfcc features and their first- and second-order derivatives
with respect to time, which results in a total number of 59-
dimension augmented m f cc features by excluding the first di-
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Feature BLSTM BGRU
mfcc 0.667 = 0.012 | 0.662 £ 0.005
mfccO 0.668 = 0.010 | 0.658 £+ 0.007
Ims 0.752 +£0.030 | 0.728 £ 0.029
mfcc + pitch 0.664 +0.015 | 0.650 = 0.011
mfcc0 + pitch 0.661 £ 0.007 | 0.660 =+ 0.022
Ims + pitch 0.750 £0.029 | 0.712+0.012
mfcc + tdoa 0.669 +0.013 | 0.662 £ 0.009
Ims + tdoa 0.753 £0.042 | 0.745+£0.030
mfcc + pitch + tdoa | 0.667 +0.011 | 0.669 £ 0.017
mfccO + pitch + tdoa | 0.677 £ 0.029 | 0.660 £ 0.008
mfcc + pitch + tdoa3 | 0.669 £ 0.019 | 0.668 4 0.024
Ims + pitch + tdoa 0.759 £ 0.037 | 0.718 £0.022
Ims + pitch + tdoa3 | 0.740 £0.026 | 0.723 £0.028

Table 1: Feature selection: for each feature combination, we ex-
periment for 10 times, calculate the mean and standard deviation of
corresponding error rates.

mension of m fcc. We denote mfcc features with the first di-
mension as m fcc0.

e pitch, tdoa3 and tdoa: We follow [7] to extract the pitch,
tdoa3 and tdoa features. We implement pitch tracking on
the thresholded parabolically-interpolated STFT [8] to extract
the top pitch value with window length of 2048, ranging from
100 Hz to 4000 Hz. Including the pitch period, we finally
get 2-dimension pitch features. By calculating the time dif-
ference of arrival (TDOA) of the frequency spectrum, we are
intended to capture the difference of localizations of overlap-
ping sound events. We follow [7, 9] to calculate the TDOA
of FFT: we first extract the correlation of both channels’ FFTs
at certain frequency band and time stamp, then find the delay
value (the TDOA value) that causes the peak of the correla-
tion. Our TDOA features are calculated across five mel-bands
ranging from 0 Hz to 22050 Hz, with three different window
lengths: 120, 240 and 480 ms. Thus resulting in 15-dimension
features, we refer to them as tdoa3 features. Similar to those
described in [7]], for each sub-band, we take the median value
of the TDOA values from three window lengths to overcome
the potential noise. This operation results in the 5-dimension
features, which we refer to as tdoa features.

2.2. Model

We propose to use a special kind of RNNs, named gated recur-
rent unit (GRU) networks, to model the temporal evolution of au-
dio features toward SED. Suppose we are given a sequence of
input vectors < x',x2,...,x’ > (concatenations of features in
our setting), a GRU unit computes the corresponding hidden ac-
tivations < h',h? ... hT >, and outputs a vector sequence <
yl,y2, ...,yT >.

Simple RNN usually fails to capture the long-term information
due to the gradient vanishing problem. Similar to LSTM, the GRU
[3]] is also designed to dynamically remember and forget the in-
formation flow, which can alleviate the above problem by a large
margin. Specifically, let © denote the element-wise multiplication
of two vectors, the single layer GRU computes the hidden state h
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and output vector y as:

rt = U(W,-Xt +U,h" 1+ b,)
z' =o(W.x'+U.h"™' +b,) (update gate)

h' = tanh(W,x" + Un(r' ©h'™ ') + by)

W=z oh'+1-2z")oh' (hidden state)

y' = a(W,h' +b,) (1)

(reset gate)

where o(-) are element-wise sigmoid functions and y* €
[0,1]%, L is the number of sound events. Each dimension of y*
means the probability of a certain sound event happening at time
t. Suppose the hidden state of GRU has a dimension of d, then
r!,z', h?',h' € R In our experiments, we exploit bidirectional
GRU (BGRU) since it makes full use of the context information
from both directions. The binary cross entropy loss (BCE loss) is
used for end-to-end training:

loss(y*,5")

b« \

L
Z Jilog(yi) + (1 = 9i)log(1 —y))] ()

where y* € {0, 1}* is the binary indicator of sound events.

2.3. Data augmentation

To further address the data scarcity issue of SED, we augment the
training data by introducing deformations that have been used in
MIR tasks [4] and sound classification tasks [[1]. We do not augment
the validation or the test sets and it is important to mention that all
the following deformations act on the raw audio recordings. We
consider the following three types of augmentation strategies:

e Pitch Shift Deformation: tune the pitch while keeping the du-
ration unchanged. Each recording is pitch-shifted by 14 times:
{£0.5,£1,£1.5, £2,+2.5,+3, +3.5} semitones. This aug-
mentation enlarges the dataset by 14 times.

o Time Stretch Deformation: slow down or speed up the audio
recording while keeping the pitch unchanged. Each sample
is time-stretched by 10 factors: {0.71, 0.76, 0.81, 0.87, 0.93,
1.07, 1.15, 1.23, 1.32, 1.41}. This augmentation enlarges the
dataset by 10 times.

e Union Deformation: for each recording, generate both the
pitch shifted counterparts with 14 semitones and the time
stretched with 10 factors. This augmentation enlarges the
dataset by 24 times.

3. EXPERIMENTS

3.1. Dataset and setup

‘We experiment on the development dataset of task3 in DCASE2017
challenge [2]. We make use of single layer BGRU with hidden size
of 16. Dropout with probability of 0.5 is applied on the output of
the hidden activations. We set initial learning rate to 0.001 and op-
timize the BCE loss with Adam [10]. During training, each record-
ing is splitted into feature sequences of length 25 with hop size of
5. While during testing, recordings are splitted into 25-long se-
quences without overlap, and we threshold the outputs with a fixed
value of 0.5 to mark whether the given sound events are active. We
follow the official partition of cross validation and randomly select
5 recordings out of the 18 training recordings for validation, the
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Figure 2: Error rates of different augmentation strategies for the
BGRU model.

best model is saved during training process according to the perfor-
mance on the validation set. Early stopping is applied to prevent
over-fitting. Since the output of our model is frame-wise prediction
at a resolution of 0.02 seconds, which exhibits noise and instabil-
ity, we first apply a sliding window to compute the average of the
model’s outputs and then follow [11] to process the binary predic-
tions with a median filter. By this means, we can partly filter out the
noise and smooth the outputs.

3.2. Metrics

We obey the official requirements to evaluate our system with the
error rate (ER) calculated on one second long segments [S]]. More-
over, as the development dataset has been partitioned into 4 folds
for cross validation, results of every testing fold are collected to
produce a single evaluation to avoid biases caused by data imbal-
ance across different folds [6].

3.3. Feature selection

We intend to use various types of features. However, the combina-
tions of different features may have diverse performances. Conse-
quently, we experiment with different kinds of feature combinations
to figure out the most appropriate one. It is worth to mention that
experiments in this section are carried out without data augmenta-
tion, we only augment the training data after we find the best feature
combination. We conduct experiments with many types of combi-
nations ranging from single feature to combinations of triple fea-
tures. For each feature combination, we run the experiments for 10
times and calculate the mean and standard deviation of their error
rates. Results are shown in Table[l] We can easily figure out that
the m f cc features always outperform Ims features by a large mar-
gin, and when we integrate m fcc and pitch features, the best per-
formance is achieved; Another important conclusion we can draw
from Table[T]is that the BGRU model always performs better than
the BLSTM model. Thus, we use BGRU as our final model for
task3 in DCASE2017.
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Table 2: Error rates comparison of our proposed system and other
top systems in task3 of DCASE2017.

Methods Evaluation | Development
Convolutional RNN [[12] 0.7914 0.25
Multiple-Input CNN [13] 0.8080 0.51

Ours 0.8251 0.614 4+ 0.003
Multi-Channel LSTM [14] 0.8526 0.66
CNN [15] 0.8575 0.81
Baseline [16] 0.9358 0.69

3.4. Data augmentation

We make use of the BGRU model with m fcc and pitch feature
combination. The error rates of different data augmentation strate-
gies are presented in Fig[2] Complying with previous experiments,
we also run each experiment for 10 times and draw a boxplot to
show the error rates. As can be seen, the best single model is ob-
tained by applying the union data augmentation strategy, with an
error rate of 0.631 £ 0.008.

Our final system makes an ensemble of the above setting: we
train four models with the same setting except that the validation
datasets are randomly selected from the training set. During testing,
the frame-wise probability prediction of the four models are aver-
aged before post-processing. By this means, we decrease the error
rates to a new level and makes the prediction quite stable. The final
error rate reported is 0.614 + 0.003, which exceeds the officially
published baseline by 11%.

We exhibit error rates of the top 5 systems in task3 of
DCASE2017, their performances on both the evaluation set and de-
velopment set are shown in Table. We ranked No.3 among all
the 13 teams which reflect the effectiveness of our proposed sys-
tem. The No.l system makes use of convolutional RNN to make
use of CNN’s feature learning capacity [12]] while the No.2 system
incorporates features from multiple scales to improve the perfor-
mance [13]. These works are meaningful inspirations for our future
research.

4. CONCLUSIONS

In this paper, we proposed to exploit the bidirectional GRU for SED
in real life audio recordings. By exploring the most appropriate fea-
ture combination and applying data augmentation techniques, we
achieved a prominent performance improvement on the develop-
ment dataset of task3 in DCASE2017 and ranked No.3 on the final
evaluation set. In future work, we will focus on the design of new
structures that better capture the evolving characteristics of sound
event data.
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