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ABSTRACT

In this report, we present a modular system for acoustic scenes clas-
sification. Our proposed system contains four modules to compute
the representations describing spectro-temporal properties of audio
data. The frequency components are extracted from cochleagram
and low-level audio feature contours. An onset map is used to de-
termine the properties of temporal structure, and binaural cues are
additional components in the final feature space. Computed features
are formed into vector and fed to random forests classifier for the
purpose of classification. The results were submitted to the 2017
IEEE AASP DCASE challenge.

Index Terms— auditory scene analysis, cochleagram, onset
map, feature contours, random forest

1. INTRODUCTION

Acoustic environment plays important role in many audio analysis
and processing tasks, including: speech enhancement, support for
multimodal systems, robotic navigation or human-machine interac-
tion. Proper identification of acoustic scene may substantially influ-
ence on the robustness of speech and music services in real acoustic
conditions. In recent years, many techniques to determine the type
of acoustic scene have been proposed. A review of methods dedi-
cated to acoustic scene classification is presented in [1]. The final
classification accuracy rely on the attributes of sound and the clas-
sification strategy. In this report, we will briefly focus on the audio
features and its discriminative properties.

2. SYSTEM OVERVIEW

The architecture of the system for auditory scene classification is
shown in Fig. 1. The stereo input signal is fed into one module and,
as a result of mixing both channels in 50/50 proportion, mono signal
is used by the rest of components. Cochleagram [2] is employed by
two modules and is generated using signals obtained at the outputs
of gammatone filterbank with N = 128 bands (channels) covering
frequency range from 50Hz to 8kHz.

The whole system was designed and implemented in C++ lan-
guage and runs as multithreaded code. The modular architecture fa-
cilitates the design of auditory scene analysis systems, with varying
level of computational constrains and various feature spaces used in
the audio parameterization stage.

3. SPECTRO-TEMPORAL REPRESENTATION

The key element of acoustic analysis efficiency is the feature space.
Audio features have to capture the properties of input signal in fre-
quency domain and temporal dynamics of the signal. In this study,
we have exploited four groups of audio features.

3.1. Binaural cues

Because the source audio data is recorded in two channels, we
included module to calculate the binaural attributes. The com-
mon binaural cues comprise [3]: (1) interaural arrival-time differ-
ence (ITD), (2) interaural level differences (ILD) and (3) interau-
ral coherence (IC). The stereo signal is split into 500ms long, non-
overlapping frames, and for each frame ILD and IC are computed.
After experimenting with binaural properties of provided data, we
discovered quite low impact of ITD on the final accuracy and we
did not include it in the binaural set. Using obtained contours of
ILD and IC, we calculated means (µ) and standard deviations (σ)
and added both pairs to feature set.

3.2. Onset map

Onset map is the representation based on the cochleagram. As the
temporal properties of the audio signal are important in auditory
perception [4], we decided to include such representation in our
feature set. For each channel of cochleagram the onsets are detected
and its attributes are calculated including the number of onsets and
statistical properties of distances between adjacent onsets [5].

3.3. Low-level feature contour histograms

The next module of the system generates histograms of low-level
audio feature contours. Each contour is calculated by splitting the
input signal into frames (frame length = 20ms, overlapping = 50%),
then for each frame a feature is computed. For obtained contour a
normalization stage is performed, and histogram is estimated. We
have used the following audio features [6, 7]: (1) spectral centroid,
(2) spectral flatness measure, (3) dominant frequency component,
(4) spectral entropy, (5) spectral sparsity, (6) spectral decrease, (7)
high to low frequency ratio, (8) tonality, (9) energy in high frequen-
cies, (10) spectral crest and 8 first linear-prediction coefficients.

3.4. Dominant bands histogram

An analysis of energy distribution over cochleagram’s frequency
bands is executed in the last module. At the output, a histogram
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Figure 1: Proposed system architecture.

of dominant bands is provided using M dominant energies in each
frame. Algorithm 1 presents a scheme to compute such histogram.

Algorithm 1: Dominant bands histogram calculation
Inputs : Φ – cochleagram representation of audio signal,

M – number of dominant bands, N – total number
of frequency bands, M < N

Output : Γ(N) – frequency bands histogram

∀k ∈ [1, N ] initialize Γ
(N)
k = 0

for each frame of Φ do

• Compute energies En for each band of Φ,
n = 1, . . . , N .

• Sort the band numbers in ascending order by En.
• Select first M band numbers with the highest energies
Em, m = 1, . . . ,M .

• For each selected number m update histogram
by Γ

(N)
m = Γ

(N)
m + 1

end
return Γ(N)

4. EXPERIMENTAL RESULTS

All experiments were performed on development set of the
DCASE’2017 challenge. Description of dataset and task details can
be found in [8]. In the classification stage we employed random
forest classifier [9]. This classifier performs bagging procedure to
reduce the variance by averaging trees and uses majority voting for
the final decision. The number of trees exploited in experiments
was equal to 850.

In the first experiment, an influence of the number of dominant
bands (M ) on the classification accuracy using Γ(128) histogram
representation was executed. The result is depicted in Fig. 2. Next,
the classification was conducted using separate feature extraction
modules of the development set. Obtained scores of both separate
and joint folds is shown in Tab. 1. Finally, the classification accu-
racy of the development set for all four modules used in the parame-
terization is depicted in Tab. 2. The cases where we obtained better
results than baseline approach are marked with boxes.
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Figure 2: Classification accuracy for feature space generated by Al-
gorithm 1.

5. CONCLUSIONS

The presented approach exploits the spectro-temporal properties of
sound data to determine the type of auditory scene. The modules
used in this study are selected components of our developed system
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Table 1: Classification accuracy of separate representations.

Representation Accuracy [%]
Fold 1 Fold 2 Fold 3 Fold 4 Average

Dominant bands
61.4 63.4 53.6 58.4 59.2

histogram (M=50)
Onset map 38.8 34.0 35.9 33.3 35.5
Binaural cues 39.0 39.3 36.2 36.2 37.7
Low-level feature

52.7 55.1 55.3 58.8 55.5
contours (K=18)

Table 2: Class-wise accuracy of the proposed system.

Acoustic scene Accuracy [%]
Fold 1 Fold 2 Fold 3 Fold 4 Average

Beach 88.5 61.5 85.9 53.8 72.4
Bus 85.9 78.2 87.2 94.9 86.5
Cafe/Restaurant 46.2 51.3 80.8 46.2 56.1
Car 80.8 93.6 96.2 94.9 91.3
City center 78.2 85.9 78.2 85.9 82.1
Forest path 98.7 94.9 75.6 82.1 87.8
Grocery store 88.5 80.8 75.6 94.9 84.9
Home 84.6 76.5 50.6 55.1 66.7
Library 34.6 69.2 47.4 79.5 57.7
Metro station 53.8 64.1 62.8 76.9 64.4
Office 82.1 92.3 61.5 93.6 82.4
Park 74.4 74.4 61.5 80.8 72.8
Residental area 44.9 59.0 53.8 41.0 49.7
Train 37.2 30.8 24.4 44.9 34.3
Tram 73.1 56.4 79.5 69.2 69.6
Average 70.1 71.3 68.1 72.9 70.6

for real-time auditory scene analysis. In the presented form, the ef-
fectiveness can be still improved by the careful selection of low-
level audio features. However, the acoustic similarities between
classes and a short length of signals deteriorate the final accuracy.
Despite the rather average results, the proposed solution is easily
extensible, has low computational needs, and can be run in real-
time.
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