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ABSTRACT
This report presents our audio scene classification systems submit-
ted for Task 1 (“acoustic scene classification”) of DCASE 2017
challenge [1]. The systems rely on combinations of generalized
label tree embedding representation, convolutional neural networks
(CNNs), and attention mechanism. Our experimental results on the
development data of the challenge show that our proposed system
significantly outperform the challenge’s baseline, improving the av-
erage classification accuracy from 74.8% of the baseline to 83.8%.
However, we achieve significantly lower accuracies on the evalua-
tion data, underperforming the DCASE baseline, due to overfitting
caused by cross-validation errors in our submission systems.

Index Terms— audio scene classification, CNN, attention,
generalized label tree embeddings

1. INTRODUCTION

Label tree embedding (LTE) [2] has been shown to be efficient in
transforming and reducing complex audio scenes into semantic rep-
resentations to expose their useful patterns. As a result, these repre-
sentations facilitates training deep networks for recognition, such as
template matching with CNNs [3, 4] and sequence modeling with
RNNs [5], with good performances reported for audio scene classi-
fication (ASC) [3, 4, 5].

In this work, we introduce generalized label tree embedding
(GLTE) which is an improved and generalized version of LTE. The
idea behind GLTE is to identify ambiguous categories and direct
them in both directions during label tree construction rather than
forcing them to be split too early at a split node as in the case of
LTE. As a result, we expect to obtain a better representation, i.e.
GLTE, compared to LTE [2]. We investigate coupling CNNs with
the GLTE representation for ASC. First, a CNN similar to those
used in [6, 3, 4] for template learning and matching will be explored.
We further study to integrate the attention mechanism [7, 8, 9] to
this CNN to produce an attentive CNN.

In general, an audio scene contains different kinds of fore-
ground events mixed with background noise. The foreground events
are usually informative for recognizing a scene [10, 11]. It is, there-
fore, reasonable to somehow weight different parts of a scene dif-
ferently in a classification model in hope that the weights will be
adapted to focus stronger on those informative parts. Ideally, these
weights should be automatically learned by the model. This can be
accomplished with an attention layer [7, 8, 9]. Attention mecha-
nism has been commonly used with RNNs [7, 8, 9], however, we
will show that it can be integrated with the proposed CNN, thank to
the CNN’s over-time convolution making this possible.

The overall pipeline of the proposed system is illustrated in Fig-
ure 1.

2. GENERALIZED LABEL TREE EMBEDDING

2.1. Learning to construct a generalized label tree

Given a training set S = {(xn, cn)}Nn=1 where x ∈ RM denotes
a low-level feature vector of size M and c ∈ {1, . . . , C} denotes
a class label with C is the number of categories. For convenience,
let us denote the label set as L = {1, . . . , C}. Our goal is to use S
to recursively construct a label tree to encode the hierarchy of the
class labels [2, 3].

Similar to the LTE algorithm proposed in [2, 3], the construc-
tion algorithm starts at the root node which is associated with the
entire set L. Without loss of generality, let us consider a current
split node with a label subset ` ⊂ L and the corresponding sample
subset S` ⊂ S. We then aim at splitting ` into two subsets `L and
`R that satisfy `L 6= ∅, `R 6= ∅, `L ∪ `R = `, and `L ∩ `R = ∅.
Among all possible partitions, we want to seek for the optimal one
such that `L and `R can be separated with as few errors as possible
using a binary classifier. To accomplish this, two-fold cross valida-
tion is performed on S`. For each fold, we decompose S` into two
halves: S`

train and S`
eval. The former is used to train a multi-class

classifierM` which is then evaluated on S`
eval to obtain the confu-

sion matrix Ã ∈ [0, 1]|`|×|`|, where | · | represents cardinality of a
set. Each element Ãij of Ã is computed by

Ãij =
1

|S`
eval,i|

∑
x∈S`

eval,i

P (j|x,M`), (1)

where S`
eval,i ⊂ S

`
eval denotes the set of samples with label i.

P (j|x,M`) denotes the posterior probability that M` predicts x

as class j. Hence, Ãij with i 6= j indicates how likely a sample
of class i is wrongly predicted to belong to class j by the classi-
fier. The overall confusion matrix A is computed as the average of
the confusion matrices obtained by two-fold cross validation. It is
further symmetrized as:

Ā = (A + AT)/2. (2)

The optimal partition {`L, `R} is then derived to minimize:

E(`) =
∑

i,j∈`L
Āij +

∑
m,n∈`R

Āmn. (3)

By this, the ambiguous categories tend to be grouped into the same
subset and, hence, produce two meta-classes {`L, `R} that are easy
to separate from one another. Spectral clustering [12] is applied on
Ā to solve a relaxed version of the optimization problem in (3).

In the LTE algorithm in [2, 3], `L and `R would be immediately
directed to the left and right child nodes, respectively. However,
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Figure 1: The overall pipeline of the proposed audio scene classification systems.
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Figure 2: A part of the constructed generalized label tree. The la-
bels in red indicate the ambiguous categories which, therefore, are
directed in both left and right child nodes.

this would conservatively enforces categories that are ambiguous to
other categories in both `L and `R to be split too early and directed
in a single direction (i.e. either left or right). They, however, should
be sent to both left and right child nodes and be split later with less
ambiguity in a deeper level of the tree. That is, they should present
in both `L and `R. Therefore, we need to identify these ambiguous
categories and re-organize the subsets.

We define the ambiguity of a category i with categories in a
certain label set ` as a(i, `) which is computed by:

a(i, `) =
∑
j∈`

Āij . (4)

Subsequently, a label i ∈ `L will be included into `R if

a(i, `R) > α, (5)

where α ∈ [0, 1] denotes the ambiguity threshold. A same proce-
dure is applied to all labels in `R to put them into `L. Eventually,
we obtain two subsets {`L, `R} that may have some categories in
common. The threshold α is used to regulate the overlapping de-
gree of the subsets and, therefore, the size of the tree. It reduces to
the label tree in the LTE case [2, 3] when α = 1.

Eventually, `L and `R are forwarded to the left and right child
nodes, respectively. The splitting process is recursively repeated to
grow the whole tree until a leaf node with a single class label is
reached. In practice, due to the overlapping, there may exist some
nodes with the same label set. During construction, we prune a node
which has its label set already existing in the current tree.

We illustrate in Figure 2 a part of the generalized label tree
constructed using the DCASE 2017 development data.

2.2. Generalized label tree embedding

GLTE representation can be derived similarly to LTE one in [2, 3].
However, for GLTE, the number of split nodes is dependent on the

ambiguity threshold α. Let us denote the number of split nodes as
D. We then obtain the embedding Ψ : RM → RD×2 where

Ψ(x) =
(
ψL

1 (x), ψR
1 (x), . . . , ψL

D(x), ψR
D(x)

)
. (6)

Here, ψL
i (x) and ψR

i (x) represent the likelihoods with which the
test sample x belongs to two meta-classes associated with the left
and right child nodes of the node i, 1 ≤ i ≤ D. To compute
ψL

i (x) and ψR
i (x), at the split node i associated with the label `i

and the partitioning {`Li , `Ri }, we train a binary classifierM`i using
the sample set S`i as training data. We consider the categories with
their labels in `Li \`Ri and `Ri \`Li as negative class and positive class,
respectively. That is, we ignore the common categories in `Ri ∩
`Li when training the classifier M`i . The likelihoods ψL

i (x) and
ψR

i (x) then read

ψL
i (x) = P (negative|x,M`i), (7)

ψR
i (x) = P (positive|x,M`i), (8)

where P (negative|x,M`i) and P (positive|x,M`i) denote the
posterior probabilities for classifying the test sample x into the neg-
ative and positive classes, respectively, by the classifierM`i .

Using the embedding, the sample x is transformed into the
high-level representation Ψ(x) (i.e. GLTE presentation).

3. CLASSIFICATION MODELS FOR ASC

3.1. GLTE feature extraction

GLTE representation can be extracted for audio scenes as similarly
done for LTE one in [3, 5]. An audio snippet was first decom-
posed into segments of length 250 ms with 50% overlap. In case
of DCASE 2017 challenge, a 10-second snippet yields T = 78 seg-
ments each of which is represented by a set of low-level features.
The per-segment low-level feature vectors were then employed to
construct a label tree with the algorithm in Section 2.1. Afterwards,
an unseen segment-wise feature vector of the test data was finally
transformed into a GLTE feature vector using the embedding in (6).

As in [3, 5], we made use of three low-level feature sets: (1) 64
Gammatone cepstral coefficients extracted in the frequency range
of 50 Hz to 22050 Hz, (2) 20 MFCC coefficients, their delta and
acceleration coefficients, (3) 20 log Mel-scale filter bank coeffi-
cients, their first and second derivatives, zero-crossing rate, short-
time energy, four subband energies, spectral centroid, and spectral
bandwidth. For low-level feature extraction, a 250-ms segment was
further decomposed into frames with a length of 50 ms and 50%
overlap. The feature extraction was performed on the frame level.
In turn, the feature vector for the entire 250-ms segment was calcu-
lated by averaging the per-frame feature vectors.

Moreover, for each low-level feature set, we extracted two
GLTE features corresponding to the presence/absence of back-
ground noise as they can complement each other [3, 4]. The back-
ground noise was subtracted using the minimum statistics estima-
tion and subtraction method [13] when necessary. As a result,
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six GLTE feature images were obtained for a scene snippet. Fi-
nally, they were concatenated to form a single GLTE feature image
S ∈ RF×T , where F is the size of a segment-wise concatenated
GLTE feature vector. In particular, to extract GLTE features for
training examples, 10-fold cross validation was conducted.

3.2. From CNN to attentive CNN

3.2.1. CNN

We employed the CNN proposed in [6] for template learning and
matching. The network architecture is illustrated in Figure 3. The
CNN is able to learn templates that are useful for the classification
task [4, 3] thank to its over-time convolution and 1-max pooling.
These templates are then convolved with an input GLTE image to
extract features for classification [4, 3]. Specifically, over-time con-
volution between a filter w ∈ RF×w of width w and a GLTE im-
age S ∈ RF×T resulted in a feature map o = (o1, . . . , oT−w+1) ∈
RT−w+1:

oi = ReLU(ai), (9)

ai =(S ∗w)i =
∑
k,l

(S[i : i+ w − 1]�w)k,l. (10)

Here, ∗ and � denote the convolution operation and element-wise
multiplication, respectively. Rectified Linear Units (ReLU) activa-
tion [14] is used in (9). We then perform 1-max pooling [15, 16]
over time to obtain a most dominant feature which corresponds to
the maximum matching score of the template (i.e. the convolution
kernel) w and the input GLTE image S [4, 3].

Furthermore, since this CNN supports filters with different
widths w, using Q × R filters (i.e. Q sets with different widths
w and R filters for each set [4, 3]) will produce a vector of Q × R
features. The resulted feature vector is finally presented to a soft-
max layer for classification. The network is trained to minimize the
cross-entropy loss over the training examples:

E(θ) = − 1

N

N∑
n=1

yn log
(
ŷn(θ)

)
+
λ

2
‖θ‖22 , (11)

where θ denotes the network parameters and λ is used to compro-
mise the error term and the `2-norm regularization term.

3.2.2. Attentive CNN (ACNN)

With the CNN in Figure 3, using R filters of width w will result
in a feature map O = (oT

1 , . . . ,o
T
T−w+1) ∈ RR×(T−w+1) (i.e. a

matrix). However, instead of using the 1-max pooling over time as
in Section 3.2, we learn an attention weight αi for a vector oT

i at the
time i, where 1 ≤ i ≤ T − w + 1, using an attention layer:

αi =
exp(f(oT

i ))∑T−w+1
j=1 exp(f(oT

j ))
. (12)

In (12), f(oT) denotes the scoring function of the attention layer
which is given by

f(oT) = oTW, (13)

T

F

 3×
∈

F
Rw

 5×
∈

F
RwG

L
T

E

 

 

C
o

n
v.

la
y

er

 

 p
o

o
li

n
g

la
y

er

 

so
ft

m
ax

la
y

er

Figure 3: The CNN architecture with convolution over time and
1-max pooling.

where W is trainable weight matrix of the attention layer. The at-
tentive output feature vector is given by:

oT
att =

T−w+1∑
i=1

αio
T
i . (14)

oT
att is finally presented to a softmax layer for classification as in the

case of CNN.

3.3. Data augmentation with GLTE feature

Data augmentation is important to improve generalization of a net-
work [17, 18]. For low-level features, this can be done via system-
atically synthesizing or transforming existing data. We show that,
data augmentation on the high-level GLTE feature can be accom-
plished by extracting GLTE features for the training data with differ-
ent data split when cross-validation. We performed cross-validation
both with and without taking into account the locations of the audio
scenes. All extracted GLTE features extracted were included then
into the training set. We experimental saw significant improvements
in the classification performance with this data augmentation.

3.4. Calibration with support vector machine (SVM)

As in [3, 5], for all employed networks, after training, we calibrated
the final classifier by employing a linear SVM in replacement for
the softmax layer for classification. The output vectors of a network
extracted from the training examples were used to train the linear
SVM classifier which was subsequently employed to classify those
output vectors extracted from the test examples.

4. EXPERIMENTS

4.1. DCASE 2017 development data

The “acoustic scene classification” task of the challenge targets 15
categories (cf. Table 1). Each category consists of 312 audio snip-
pets of 10 seconds. The data is split into 4-fold cross validation (cf.
[19] for more details).
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Table 1: The classification accuracies obtained by different systems.

Category Development data Evaluation data

Baseline CNN ACNN Baseline CNN ACNN CNN+ ACNN+
Beach 75.3 82.7 81.4 40.7 38.9 41.7 41.7 53.7
Bus 71.8 96.7 95.1 38.9 48.1 45.4 44.4 47.2
Cafe/Restaurant 57.7 68.9 64.4 43.5 61.1 51.9 68.5 64.8
Car 97.1 93.3 91.0 64.8 82.4 79.6 74.1 75.0
City center 90.7 91.0 88.8 79.6 60.2 56.5 57.4 59.3
Forest path 79.5 94.1 94.1 85.2 80.6 67.6 94.4 91.7
Grocery store 58.7 82.4 84.6 49.1 65.7 62.0 66.7 61.1
Home 68.6 76.1 75.2 76.9 73.1 70.4 66.7 70.4
Library 57.1 72.8 73.7 30.6 38.9 35.2 27.8 28.7
Metro station 91.7 89.9 87.9 93.5 85.2 88.9 68.5 75.9
Office 99.7 99.7 99.4 73.1 34.3 33.3 76.9 69.4
Park 70.2 76.3 70.8 32.4 32.4 31.5 21.3 14.8
Residential area 64.1 80.8 78.5 77.8 58.3 52.8 40.7 34.3
Train 58.0 68.5 67.1 72.2 71.3 72.2 71.3 68.5
Tram 81.7 84.2 82.8 57.4 54.6 50.0 54.6 55.6
Overall 74.8 83.8 82.3 61.0 59.0 55.9 58.3 58.0

4.2. Parameters

The classifiers in the tree construction and GLTE extraction algo-
rithms in Section 2 were trained with random-forest classification
[20] with 200 trees each. We set the ambiguity threshold in (5) to
α = 0.2.

The CNN was designed to have three filter sets of widths
{3, 5, 7} with Q = 500 filters each. We set a dropout [21] rate of
0.5 on the output feature vector. The attentive CNN was designed
to have a set of 500 filters of width w = 5, a dropout rate of 0.2 on
the output, and the attention size of 40. Both CNNs were trained for
500 epochs with a batch size of 50.

For all proposed networks, Adam optimizer [22] was employed
for training with a leanring rate of 10−4. The regularization param-
eter λ was set to 10−3.

4.3. Experimental results

The classification results obtained by different systems are shown in
Table 1. Overall, the CNN achieves the best classification accuracy
(83.8%), outperforming the DCASE 2017 baseline over most of
the scene categories except for “metro station” on which it slightly
underperform the baseline. The average accuracy gains obtained by
the CNN is 9.0% absolute over the baseline.

The results obtained by the ACNN are also encouraing, improv-
ing the average classification accuracy from 74.8% of the baseline
to 82.3%, although is is inferior to that of the CNN with a gape of
1.5% absolute. However, the ACNN shows its efficiency on several
categories, such as “forest path”, “grocery store”, and “library”.

In fact, the 1-max pooling over time of the CNN can be inter-
preted as a special attention mechanism. It fully puts attention on
that parts of a scene that best matches to the templates (i.e. the
convolutional filters) of the CNN and nulling out the rest. Further-
more, opposed to the typical attention mechanism which is based
on time indices (i.e. it learns a common weight for all features at
a certain time index), the special mechanism is filter-wise (i.e. it
considers each convolutional filter separately). Therefore, features

at a certain time index may have different attention weights.

5. THE SUBMISSION SYSTEMS

We developed four systems: CNN, ACNN, CNN+, ACNN+ to sub-
mit for Task 1 of the DCASE 2017 challenge. For the former two,
their parameters were retained the same as those used for the devel-
opment data, except for that the whole development data was used
for training. For CNN+ and ACNN+, we utilized the GLTE data
extracted in the experiments with the development data (both train-
ing and test data of all four folds) as additional data augmentation.
These GLTE data were extrated with the data splits provided by
the challenge (i.e. different subsets of the development data) and,
therefore, can reasonably serve for our data augmentation purpose
as explained in Section 3.3.

The results of our submission systems are shown in Table 1.
Overall, all four systems underperform the DCASE baseline on the
evaluation data. It can be explained by the fact that there were some
errors in our submission systems related to the cross-validation pro-
cedure to extract GLTE features for the training data. As a result,
training the networks on these erroneous GLTE features leads to
severe overfitting on the evaluation data.

6. CONCLUSIONS

We introduced in this work a novel GLTE representation for au-
dio scene representation. We then proposed two different systems
based on CNNs and the attention mechanism and trained them on
the GLTE features for audio scene classification. Experiments on
the DCASE 2017 development data show significant improvements
on the classification accuracy obtained by our systems over the chal-
lenge’s baseline. An average accuracy gain up to 9.0% absolute is
achieved by our systems compared to the baseline. However, the
accuracies on the evaluation data are significantly degraded due to
errors in our submission systems.
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