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ABSTRACT

This paper presents the methodology we have followed for our sub-
mission at the DCASE 2017 competition on acoustic scene classi-
fication (Task 1). The approach is based convolutional neural net-
works. There is nothing original about this contribution, as we have
just applied a human-based search of the best CNN architecture and
hyper-parameters using a 4-fold cross-validation for selecting the
best model. We hope that this approach will not reach the top en-
try of the challenge and that it will be outperformed by clever and
beautiful methods.

Index Terms— CNN, CQT, acoustic scene, ugly brute force.

1. INTRODUCTION

Audio scene classification is a complex problem which aims at iden-
tifying acoustic environments solely based on audio recordings of
the scene. The scenes we are interested in can be defined accord-
ing to some geographical contexts (beach, park, etc...), some social
situations in indoor or outdoor locations (restaurant, office, home,
market, library, ..) or according to some ground transportations (car,
bus, tramway, ...). Being able to accurately recognize such scenes is
relevant for applications in which context awareness is of primary
importance.

In the last decade, advances in the state-of-the-art in this do-
main were few but a steady increase of studies occured in the last
years. Novel approaches for addressing this problem of acoustic
scene classification have flourished [1, 2, 3] and they have been es-
sentially fueled by the release of open and established datasets for
benchmarking. These datasets include the one used for the chal-
lenge DCASE 2013 [4], the LITIS Rouen Audio scene dataset [5]
and the DCASE 2016 Challenge dataset [6]. For the Task 1 of the
DCASE 2017 Challenge [7], the dataset from 2016 has been en-
riched with new recordings which has been used as evaluation set.

For this novel challenge, we have used a dumb approach which
consists in brute forcing the search for the best CNN architectures
and hyperparameter selections. We have tried a lot of them and
retained the best performing one for our submissions.
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2. METHOD

2.1. The dataset

The data we have to deal with are composed of 10s audio scenes
acquired in different places. Our objective is to learn from some
labeled examples of audio scene the place where they have been ac-
quired. In the dataset available for developing the methodology, 312
segments of 10s are available per location (the class to retrieve). In
addition, some specific folds defining 4 sets of training and valida-
tion are provided. Details about the dataset can be found in [7]. All
the results presented in here are obtained as an average accuracy
over the 4 folds.

2.2. Machine learning Pipeline

The approach we have developed addresses the problem as a ma-
chine learning problem where each of the labeled acoustic scene is
considered as a single example. Hence, as in many machine learn-
ing tasks, the most difficult problem is to design some features that
are able to grasp specificities of each acoustic scene class while pre-
serving discriminative power. In order to cope with this problem,
we apply in this work a convolutional neural network approach that
learn features from time-frequency representations.

2.2.1. Time-Frequency representation of acoustic scenes

The first transformations we apply to each acoustic scene signal are
the following

• the stereo signal is averaged over the two channels
• we compute a CQT transform of hop length of 1024, on 12

octaves, a total number of bins of 288 and with minimal fre-
quency of 5 Hz.

• the module amplitude of this transform is then log compressed
through the mapping log(x−mini(xi) + ε), with ε = 0.01

At this point, each acoustic scene can be represented as a matrix of
size 288× 431.

2.2.2. Evaluated models

We have evaluated several different data normalization and CNN ar-
chitectures. Notably, for the data normalization, we were interested
in whether we should

1. normalize the signal to unit energy before CQT transform

2. normalize each component of the log-compressed CQT
transform between 0 and 1
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Acoustic Scene Baseline Our model
beach 75.3 87.5

bus 71.8 96.8
cafe/restaurant 57.7 78.2

car 97.1 96.8
city center 90.7 95.8
forest path 79.5 92.9

grocery store 58.7 92.6
home 68.6 89.3

library 57.1 73.7
metro station 91.7 97.4

office 99.7 92.9
park 70.2 63.5

residential area 64.1 59.9
train 58.0 86.2
tram 81.7 84.6

Overall 74.8 85.9

Table 1: Class accuracy for all the acoustic scenes. Comparison
between the baseline and our model.

3. normalize the traning set to 0 mean and unit standard devia-
tion and the validation and test sets accordingly.

Regarding architectures, we have tried different CNN feature
learning architectures by combining a base architecture. The clas-
sifier layer (which have been kept fixed) is composed by a fully-
connected layer with 200 units followed by dropout and a non-
linearity. The output layer is composed of 15 neurons related to
the class probabilities of each class. The base architecture is a con-
volutional layer, followed by a non-linearity and pooling. Within
this broad framework, we have evaluated : different kernel size,
different pooling size, different non-linearity, different number of
layers.

Each model has been trained with Keras [8]. We have used
Adadelta with default parameters as optimization algorithm and the
categorical cross entropy loss as loss function. We have set the max-
imum number of epochs to 100 and the batch size to 5. For each
fold, we retain the model that has performed the best on the valida-
tion set during the full training process.

On the overall, we have evaluated more than 70 architectures
for each of the preprocessing method. The best model we achieved
is given in Table 2. This model performs best when the signal is not
normalized to unit energy but data scaling over each example and
normalization over the sets are applied. Interestingly, we can note
that the model is a multi-resolution model, denoted as Res1, Res2
and Res3 for which learned features are concatenated before being
fed to the fully-connected layers. The receptive fields of these base
models increase in frequency denoting the importance of having
filters in which frequency bands are highly-mixed through convolu-
tion and other filters for which frequency bands need to be genuine.

The performance of this model is reported in Table 1 jointly
to the one of the baseline methode reported by Mesaros et al. [7].
We can note that for 4 out of 15 acoustic scenes our model always
performs better than the baseline. However it seems to struggle in
correctly classifying quiet scenes such as office, park and residential
area.

Table 2: Our best ConvNets architecture.
Type Res 1 Res 2 Res 3
Input 288× 431 288× 431 288× 431

Convolution 20 - (2× 15) 20 - (7× 15) 20 - (16× 15)
ReLu Unit

Max Pooling (2× 5) (2× 5) (2× 5)
Convolution 40 - (1× 15) 40 - (1× 15) 40 - (1× 15)

ReLu Unit
Max Pooling (1× 8) (1× 8) (1× 8)

Merge Flatten and Concatenate
FullyConnected 34440× 200

Dropout p = 0.8
FullyConnected 200× 15

2.3. Submission

For predicting on the test set, we have proceeded according to the
following steps. We predict the class of each example of the test
set according to the models trained on each of the fold. Afterwards,
we average the class prediction score over the fold and selects the
class with higher probability. When averaging over several models,
we proceed exactly in the same way and consider an averaging over
4×N scores, where N is the number of models. In final, we have
submitted :

1. a result using a single model

2. a result using the average of the 4 top-performing models

3. a result using the average of the 19 top-performing models

3. CONCLUSION

This paper describes our submission at DCASE 2017. It is based on
a brute-force human-based greedy search of the best architectures.
While results on the development set seem to be good, it would be
sad if this approach reaches top entry in the challenge.
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