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ABSTRACT

In this paper we present our DCASE 2017 Challenge on Detec-
tion and Classification of Acoustic Scenes and Events contributions.
We propose a parallel Convolutional Neural Network architecture
for the task of classifying acoustic scenes and urban sound scapes.
We propose a Deep Neural Network architecture for the task of
acoustic scene classification which harnesses information from in-
creasing temporal resolutions of Mel-Spectrogram segments. This
architecture is composed of separated parallel Convolutional Neu-
ral Networks which learn spectral and temporal representations for
each input resolution. The resolution are chosen to cover fine-
grained characteristics of a scene’s spectral texture as well as its dis-
tribution of acoustic events. The best performing variant of the pro-
posed model scores 90.54% accuracy on the development dataset.
This is a 6.81% improvement of the best performing single resolu-
tion model and 15.74% of the DCASE 2017 Acoustic Scenes Clas-
sification task baseline [1].

1. INTRODUCTION

Convolutional Neural Networks (CNN) [2] have become a popular
choice in computer vision due to their ability to capture nonlinear
spatial relationships which is in favor of tasks such as visual ob-
ject recognition [3]. Their success has fueled the interest as well in
audio-based tasks such as speech recognition and music information
retrieval. An interesting sub-task in the audio domain is the detec-
tion and classification of acoustic sound events and scenes, such as
the recognition of urban city sounds, vehicles, or life forms, such as
birds [4]. The IEEE AASP Challenge DCASE is a benchmarking
challenge for the “Detection and Classification of Acoustic Scenes
and Events”. Acoustic Scene Classification (ASC) in urban envi-
ronments (task 1) is one of four tasks of the 2016 and 2017 com-
petition. The goal of this task is to classify test recordings into one
of predefined classes that characterizes the environment in which it
was recorded, for example “metro station”, “beach”, “bus”, etc. [1].

The presented approach attempts to circumvent various limita-
tions of Convolutional Neural Networks (CNN) concerning audio
classification tasks. By applying CNNs to an audio analysis task
it is transposed to the visual computing domain. A common ap-
proach is to use Short-Term Fourier Transform (STFT) to retrieve
a Spectrogram representation which is in the following interpreted
as a gray-scale image. Commonly a Mel-Transform is applied to
scale the Spectrogram to a desired input size. In previous work we
have introduced a CNN architecture to learn timbral and temporal
representations at once. This architecture takes a Mel-Spectrogram

as input and reduces this information in two parallel CNN stacks to-
wards the spectral and the temporal dimension. The combined rep-
resentations are input to a fully connected layer to learn the concept
relevant dependencies. The challenge is how to choose the length
of the input analysis window. Acoustic events can be single sounds
or compositions of multiple sounds. Acoustic scenes could be de-
scribed by the presence of a single significant acoustic event such as
the sound of the waves at the beach or by combinations of different
events. The temporal pattern of such combinations varies distinc-
tively across and within the acoustic scenes (see Figure 1 for exam-
ples of acoustic scenes). Choosing the wrong size of the analysis
window can either prevent from having sufficient timbral resolution
or to fail to recognize acoustic events with longer patterns.

Thus, we propose an architecture that trains on multiple tempo-
ral resolutions to harness relationships between spectral sound char-
acteristics of an acoustic scene, and its patterns of acoustic events.
This would facilitate to learn more precise representation on a high
temporal scale to discriminate timbral differences such as diesel en-
gines from trucks and petrol based engines from private cars. On the
other hand, low level temporal resolutions with ranges from several
seconds can optimize on different patterns of acoustic events such
a speech, steps or passing cars. Finally, the representations of the
different temporal resolutions, learned by the parallel CNN stacks,
are combined to form an input for a fully connected layer which
learns the relationships between them to predict the acoustic scenes
annotated in the dataset.

In Section 2 and 3 we provide a detailed description of our
method and the applied data augmentation methods. Section 4 de-
scribes the evaluation on the development dataset and results while
results are presented and discussed in Section 5. Finally, Section 6
summarizes the paper and provides conclusions.

2. METHOD

The presented approach analyses multiple temporal resolutions si-
multaneously. The design of this architecture is based on the hy-
pothesis that acoustic scenes are composed of the spectral texture
or timbre of a location such as the low-frequent humming of re-
frigeration units in supermarkets as well as a sequence of acoustic
events. These events can be unique for certain locations such as
the sound of breaking waves at the beach, but usually the charac-
teristics of a location is described by mixtures of multiple events or
sounds. Spectral texture or timbre analysis requires high temporal
resolutions. To distinguish the trembling fluctuations of a truck’s
diesel engine from a private car an analysis window of several mil-
liseconds is required. Acoustic events, as exemplified in Figure 1,
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Figure 1: Example Mel-Spectrograms to visualize variances in length and shape of different acoustic events. a) dropping coins into the
cash-box, b) beating coffee grounds out of the strainer, c) Doppler effect with Lloyd’s mirror effect [5] of a passing car, d) chirping bird, e)
opening and closing of cupboards and drawers in the kitchen, f) arriving subway with pneumatic exhaust.

happen on a much broader temporal scale. The pattern of beating
the coffee grounds out of the strainer of an espresso machine in a
caf (see Figure 1 b) requires an analysis window of 0.5 to 1 sec-
onds. Up to 5 seconds are required for the very significant dropping
sound of a decelerating Metro engine with the pneumatic exhaust of
the breaks at full halt (see Figure 1 f).

Figure 2 visualizes different spectral resolutions at a fixed start-
offset from audio content recorded in a residential area. Figure 2
a) visualizes the low-frequent urban background hum at a very high
temporal resolution. At this level a CNN can learn a good tim-
bre representation for acoustic scenes, but it is not able to recog-
nize acoustic events that are longer than 476 milliseconds. Patterns
such as speech (see Figure 2 c) or combinations of patterns such
as people talking while a car is passing (see Figure 2 e) require
much longer analysis windows, up to several seconds. The prob-
lem with single-resolution CNNs is, that a decision has to be made
concerning the length and precision of the analysis window. A high
temporal resolution prevents from recognizing long events while a
low resolution is not able to effectively describe timbre. Increasing
the size of the input segment to widen the analysis window would
also increase the size of the model, its number of trainable param-
eters and the number of required training instances to avoid over-
fitting. If pooling-layers are extensively used to reduce the size of
the model, the advantage of the high temporal resolution gets lost
in these data-reduction steps.

Thus, we propose to use multiple inputs at different temporal
resolutions to have separate CNN models learn acoustic scene rep-
resentations at different scales which are finally combined to learn
the categorical concepts of the acoustic scene classification dataset.

2.1. Deep Neural Network Architecture

The presented architecture consists of identical but not shared Con-
volutional Neural Network (CNN) stacks - one for each temporal
resolution. These stacks are based on the parallel architectures ini-
tially described in [6] and further developed in [7, 8]. The fully
connected output layers of each parallel CNN stack, which is con-
sidered to contain the learned representation for the corresponding
temporal resolution, are combined to the multi-resolution model.

The Parallel Architecture: This architecture uses a parallel ar-
rangement of CNN layers with rectangular shaped filters and
Max-Pooling windows to capture spectral and temporal rela-
tionships at once [6]. The parallel CNN stacks use the same

input - a log-amplitude transformed Mel-Spectrogram with 80
Mel-bands spectral and 80 STFT frames temporal resolution.
The variant used in this paper (see Figure 3b) is based on the
deep architecture presented in [8]. The first level of the par-
allel layers are similar to the original approach [7]. They use
filter kernel sizes of 10×23 and 21×10 to capture frequency
and temporal relationships. To retain these characteristics the
sizes of the convolutional filter kernels as well as the feature
maps are sub-sequentially divided in halves by the second and
third layers. The filter and Max Pooling sizes of the fourth layer
are slightly adapted to have the same rectangular shapes with
one part being rotated by 90◦. Thus, each parallel layer sub-
sequently reduces the input shape to 2 ×10 dimensions - one
layer reduces the spectral while preserving the temporal infor-
mation, the other performs the same reduction on the temporal
axis. The final equal dimensions of the final feature maps of the
parallel model paths balances their influences on the following
fully connected layer with 200 units.

Multi-Temporal Resolutions CNN: The proposed architecture
instantiates one parallel architecture for each temporal resolu-
tion (see Figure 3b. Their fully connected output layers are con-
catenated. To learn the dependencies between the sequences of
spectral and temporal representations of the different temporal
resolutions an intermediate fully connected layer with 512 units
is added before the Softmax output layer.

Combined Max-Average Pooling Layers: Max-Pooling is a
data reduction layer which keeps the highest local value
within a given surrounding. This property has shown to be
advantageous for image processing tasks because it preserves
salient objects and edges. In the acoustic domain sound is not
predominately defined by its loudest value. A Max-Pooling
layer though only keeps those peaking values which in turn
mask all others. In the worst case, a single short spectral burst
with its spectral energy spread over all frequencies would
mask any other spectro-temporal pattern of an audio signal
independent from its length. Average-Pooling on the other
hand filters out peaking events which removes the attacks of
a sound which are in combination with decay an important
property of timbre. The proposed Max-Average-Pooling layer
applies Max- and Average-Pooling on the inputs. The resulting
output is stacked which corresponds to a doubling of the input
feature maps (see Figure 3c).
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Figure 2: Input Segments for the Convolutional Neural Networks with 80 Mels spectral and five different temporal resolutions with fixed
start-offset. a) spectral texture of residential area background noise, b) person saying a word (vertical wave-line), c) person talking, tweet of
a bird (horizontal arc), d) person talking, bird tweeting, e) person talking, bird tweeting, car passing (light cloud to the right)

3. DATA AUGMENTATION

The most challenging characteristics of the provided dataset is its
low variance. Table 1 depicts that for each class audio content of
3120 seconds length is provided. Nevertheless, this content orig-
inates from only 13 to 18 different locations per class. To create
more data instances these recordings have been split into 10 sec-
onds long audio files, but this does not introduce more variance due
to very high self-similarity within a location. This low variance
leads complex neural networks with a large number of trainable pa-
rameters to over-fit on the training data. Further, the limitation of
10 seconds per file prevents from using larger analysis windows. To
circumvent these shortcomings data augmentation using the follow-
ing methods is applied:

Split-Shuffle-Remix of audio files: To create additional audio
content by increasing the length of an audio file its content
is segmented by non-silent intervals. To create approximately
10 segments the Decibel-threshold is iteratively increased until
the desired quantity is reached. These segments are duplicated
to retrieve four identical copies which corresponds to 40 sec-
onds of audio. All segments are then randomly reordered and
remixed into a final combined audio file.

Remixing Places: To introduce more variance in the provided
data, additional training examples are created by mixing files of
the same class. Based on the assumption that classes are com-
posed of a certain spectral texture and a set of acoustic events,
mixing files of the same class would generate new recordings of
this class. For each possible pairwise combination of locations
within a class, a random file for each location is selected. The
recordings are mixed by averaging both signals.

Pitch-Shifting: The pitch of the audio signal is increased or de-
creased within a range of 10% of its original frequency while
keeping its tempo the same. The 10% range has been subjec-
tively assessed. Larger perturbations sounded unnaturally.

Time-Stretching: The audio signal is speed up or slowed down
randomly within a range of 10% at maximum of the original
tempo while keeping its pitch unchanged.

Noise Layers: A data-independent augmentation method to in-
crease the model’s robustness. The input data is corrupted
by adding Gaussian noise with a probability of σ = 0.1 is
to the Mel-Spectrograms. The probability σ has been empiri-
cally evaluated in preceding experiments using different single-
resolutions models. From the tested values [0.05, 0.1, 0.2, 0.3]
a σ of 0.1 improved the model’s accuracies most.

4. EVALUATION

The presented approach was evaluated on the development dataset
of the TUT Acoustic Scenes 2017 dataset [1]. The dataset consists
of 15 classes representing typical urban and rural acoustic scenes
(see Table 1). 4-fold cross-validation was applied using grouped
stratification which preserved the class distribution of the original
ground-truth assignment in the train/test splits as well as ensured
that files of the same location are not split across them. The perfor-
mance was measured in classification accuracy on a per-instance-
level (raw) for every extracted Mel-Spectrogram as well as on a per-
file-level (grouped) by calculating the average Softmax response
for all Mel-Spectrograms of a file. For each audio file 10 log-
amplitude scaled Mel-Spectrograms with 80 Mels times 80 frames
are extracted from the normalized input signal using random off-
sets and increasing FFT window sizes of 512, 1024, 2048, 4096,
8192 samples with 50% overlap. To augment the data, additional
10 random input segments were extracted for time-stretched, pitch-
shifted place-wise remixed audio content. Split-Shuffle-Remix aug-
mentation preceded all feature extraction processes. The neural net-
works were trained using Nadam optimization [9] with categorical
crossentropy loss at 10−5 learning rate and a batch-size of 32. The
learning rate was reduced by 10% if the validation loss did not im-
prove over 3 epochs maintaining a minimum rate of 5 ∗ 10−6.

The evaluation is divided into single- and multi-resolution ex-
periments. First, for each of the combined model’s resolutions a
separate parallel CNN model, and second, the full multi-resolution
model is evaluated. Both experiments are performed using un-
augmented (raw) and augmented input data.

4.1. Evaluation Dataset

The final predictions on the evaluation dataset have been estimated
using the trained models of each of the cross-validation folds on
the development dataset. From each evaluation dataset audio file
10 log-scaled Mel-Spectrograms have been extracted after expand-
ing its length to 40 seconds using the described Split-Shuffle-Remix
augmentation method. Each data instance was predicted by each of
the four optimized models. The prediction results were weighted by
the fold accuracy and finally the average of all predictions for a file
was calculated. The following submissions have been evaluated on
the evaluation dataset:
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Figure 3: The Multi-Resolution Model (a) which consists of one
Parallel CNN Architecture (b) per temporal resolution.

Schindler AIT task1 1: The multi-resolution architecture as de-
scribed in Section 2 using Max-Pooling for data reduction.

Schindler AIT task1 2: The same multi-resolution architecture
as described in Section 2 using the combined Max- and
Average-Pooling layers.

5. RESULTS AND DISCUSSION ON THE DEVELOPMENT
DATASET

As shown in Table 2 the proposed multi-resolution model clearly
outperforms the best performing single-resolution models by
3.56%. Although an improvement can already be observed on un-
augmented (raw) data, the high complexity of the model especially
gains from the added variance of augmented data. An improve-
ment of 6.81% was reached using the combined Max- and Aver-
age pooling layers. This represents an improvement of 12.49% and
15.74% over the DCASE 2017 Acoustic Scenes Classification task
baseline [1]. Grouping and averaging the predictions for a file of
all single-resolution models (see ’grouped single’ in Table 2) does
not increase the performance of these models, nor is it comparable
to the multi-resolution model. It was further observed that lower

Table 1: Per class dataset Overview. Number of different locations,
complete length as well as min/max/mean length of audio content.

Label num diff Audio length (in seconds)
locations sum min max mean

beach 17 3120 120 210 183.5
bus 18 3120 60 300 173.3
cafe/restaurant 16 3120 120 300 195.0
car 17 3120 90 270 183.5
city center 15 3120 150 270 208.0
forest path 18 3120 60 300 173.3
grocery store 17 3120 120 270 183.5
home 16 3120 90 300 195.0
library 16 3120 150 240 195.0
metro station 17 3120 90 300 183.5
office 13 3120 150 300 240.0
park 17 3120 120 210 183.5
residential area 17 3120 120 240 183.5
train 17 3120 90 270 183.5
tram 17 3120 60 300 183.5

Table 2: Experimental results (classification accuracy with standard
deviation over cross-validation folds). Single-resolution model re-
sults provided on top, multi-resolution with Max-Pooling (MP) and
Max-Average-Pooling (MAP) models at the bottom.

fft instance grouped instance grouped
win size raw raw augmented augmented

512 64.14 (2.84) 70.32 (2.96) 69.06 (4.33) 76.63 (4.44)
1024 66.32 (2.58) 71.27 (3.06) 71.70 (5.46) 77.06 (5.46)
2048 66.83 (1.52) 70.23 (1.99) 76.24 (2.53) 80.46 (3.30)
4096 69.50 (2.83) 71.92 (3.23) 79.20 (3.03) 81.66 (3.29)
8192 69.66 (2.58) 71.47 (2.95) 82.26 (2.40) 83.73 (2.63)
grouped single 73.12 83.19
multi-res MP 72.23 (4.15) 74.30 (4.81) 85.22 (2.11) 87.29 (2.02)
multi-res MAP 88.82 (2.92) 90.54 (3.33)

temporal resolutions perform better than higher. This could indi-
cate that the higher contrast of peaking spikes in the spectrograms
makes it easier for algorithms to learn better and more discrimina-
tive representations than from the noise-like pattern of higher tem-
poral resolutions. As already reported in preceding studies [7, 10, 8]
the grouped accuracy outperforms instance based (raw) prediction.
Averaging over multiple predicted segments of a test file balances
outliers in the classification results. The custom dropout which
dropped the output of two random resolution CNN stacks showed
little effect on the general performance of a model. Conventional
Dropout with a probability of σ = 0.25 seemed sufficient.

In the DCASE 2017 challenge on task 1, the multi-res model
Schindler AIT task1 1 and Schindler AIT task1 1 (using max-
average pooling) both scored 61.7 % accuracy on the evaluation
set.

6. CONCLUSIONS AND FUTURE WORK

The presented study introduced a Convolutional Neural Network
(CNN) architecture which harnesses multiple temporal resolutions
to learn dependencies between timbral properties of an acoustic
scene as well as its temporal pattern of acoustic events. The experi-
mental results showed that the proposed multi-resolution model out-
performs the all single-resolution and combined models by at least
6.81%. Future work woul concentrate on improved data augmen-
tation models, including evaluations on which augmentation meth-
ods have an improving/degrading effect on the classes (e.g. grocery
store) and which methods can be applied to make the lower per-
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forming classes more discriminative.

7. REFERENCES

[1] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database
for acoustic scene classification and sound event detection,”
in 24th European Signal Processing Conference 2016 (EU-
SIPCO 2016), Budapest, Hungary, 2016.

[2] Y. LeCun, Y. Bengio, et al., “Convolutional networks for im-
ages, speech, and time series,” The handbook of brain theory
and neural networks, vol. 3361, no. 10, p. 1995, 1995.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” in Ad-
vances in neural information processing systems, 2012, pp.
1097–1105.

[4] B. Fazekas, A. Schindler, T. Lidy, and A. Rauber, “A multi-
modal deep neural network approach to bird-song identifica-
tion,” Working Notes of CLEF, vol. 2017, 2017.

[5] K. W. Lo, S. W. Perry, and B. G. Ferguson, “Aircraft flight
parameter estimation using acoustical lloyd’s mirror effect,”
IEEE Transactions on Aerospace and Electronic Systems,
vol. 38, no. 1, pp. 137–151, 2002.

[6] J. Pons, T. Lidy, and X. Serra, “Experimenting with musically
motivated convolutional neural networks,” in Proceedings of
the 14th International Workshop on Content-based Multime-
dia Indexing (CBMI 2016), Bucharest, Romania, June 2016.

[7] T. Lidy and A. Schindler, “CQT-based convolutional neural
networks for audio scene classification,” in Proceedings of the
Detection and Classification of Acoustic Scenes and Events
2016 Workshop (DCASE2016), September 2016, pp. 60–64.

[8] A. Schindler, T. Lidy, and A. Rauber, “Comparing shallow
versus deep neural network architectures for automatic mu-
sic genre classification,” in 9th Forum Media Technology
(FMT2016), vol. 1734. CEUR, 2016, pp. 17–21.

[9] T. Dozat, “Incorporating nesterov momentum into adam,”
2016.

[10] T. Lidy and A. Schindler, “Parallel convolutional neural net-
works for music genre and mood classification,” Music Infor-
mation Retrieval Evaluation eXchange (MIREX 2016), Tech.
Rep., August 2016.


	 Introduction
	 Method
	 Deep Neural Network Architecture

	 Data Augmentation
	 Evaluation
	 Evaluation Dataset

	 Results and Discussion on the Development Dataset
	 Conclusions and Future Work
	 References

