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ABSTRACT

State-of-the-art audio event detection (AED) systems fully
rely on supervised-learning based on strongly labeled data.
The dependence on strong labels severely limits the scalabil-
ity of AED work. Large-scale manually annotated datasets
are difficult and expensive to collect [1], whereas weakly la-
beled data could be much easier to acquire. In weakly la-
beled data, we only need to determine whether an event in the
recording is present or absent. This not only makes manual la-
belling significantly easier but also makes automatically infer-
ring labels from online multimedia or audio meta-information
(titles, tags, etc) possible [2]. This work employs a subset of
Google’s AudioSet [3], which is a large number of weakly
labeled YouTube video excerpts. The subset focuses on trans-
portation and warning sounds and consists of 17 sound events
divided into two categories: Warning and Vehicle.

We perform experiments on 3 sets of features, including
standard Mel-frequency cepstral coefficients (MFCC) and
log-Mel spectrograms and pre-trained embeddings extracted
from a deep convolutional network. Our system employs
multiple instance learning (MIL) [4] approaches to deal with
weak labels by bagging them to positive or negative bags.
We apply 4 models, Deep Neural Network (DNN), Recur-
rent Neural Network (RNN) and Convolutional Deep Neural
Network. Using the late-fusion approach, we improve the
performance of the baseline audio tagging (Subtask A) F1
score 13.1% by 18.1%.

The embeddings extracted by the convolutional neural
networks significantly boosts the performance of all the mod-
els.

Index Terms— weak labels, audio event detection (AED),
multiple instance learning (MIL), late fusion

1. INTRODUCTION

Increasingly, machines in various settings are equipped with
hearing capabilities. There will be a huge benefit brought
by human-like audio event detection in domains such as
self-driving cars, smart cities and related areas. Unlike hu-
man speech, environmental sounds are much more diverse
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and span a wide range of frequencies. Sound events that
happen in these settings are usually sporadic and smeared
with different noises. Existing works on audio event detec-
tion (AED) [5][6] rely heavily on the supervised learning
paradigm which requires strongly labeled datasets. Given
the huge difficulty and heavy resource requirement to collect
such datasets, there are only few that are available to the
public and they are often of very limited size [1][7].

This motivates the community to explore weakly labeled
dataset. Weak labels only need to determine whether an
event in the recording is present or absent. This greatly re-
duces the resource needed for collecting such dataset. In
this work, we use a subset of Google’s AudioSet [3]. We
extract several feature representations based on signal pro-
cessing methods and neural networks: Mel-frequency cep-
stral coefficients(MFCC), log Mel-Spectrum and CNN based
embeddings. Here, all the training instances are loaded in the
multiple instance learning (MIL) framework. We apply state-
of-the-art deep learning models to perform classification.

2. DATASET

2.1. Google Audio Set

The DCASE 2017 Challenge Task 4 dataset is a subset of
Google’s ”AudioSet: An Ontology And Human-Labeled
Dataset For Audio Events”.

To collect AudioSet Google worked with human annota-
tors who listen, analyze and verify the sounds they hear within
YouTube clips. To facilitate faster accumulation of exam-
ples for all classes, Google relies on available YouTube meta-
information and content-based search to nominate candidate
video segments that are likely to contain the target sound. A
detailed description of the data annotation procedure is avail-
able in [3].

2.2. Unbalanced Labels

The challenge subset contains 17 sound event classes divided
into two categories : Warning and Vehicle sounds. Each sam-
ple is a 10 second audio excerpt from a YouTube video and



is assigned one or more class label(s). The number of sam-
ples per class is highly imbalanced with an imbalance ratio of
1:94 for minority to majority class samples. In total the train-
ing dataset contains 51,172 samples which is approximately
142 hours of audio. The class label names and number of
samples in each class are shown in Table 1.

Class Label Name | Number of Samples
Warning Sounds

Train horn 441
Truck horn 407
Car alarm 273
Reversing beeps 337
Ambulance siren 624
Police siren 2,399
Fire truck siren 2,399
Civil defense siren 1,506
Vehicle Sounds

Bicycle 2,020
Skateboard 1,617
Car 25,744
Car passing 3,724
Bus 3,745
Truck 7,090
Motorcycle 3,291
Train 2,301

Table 1. Class labels and number of samples per class.

Table 1 shows that the number of car and truck sample
are way more than other rare classes such as reverse beeps
and car alarm. Meanwhile, the number of every classes in the
provided validation set is balanced. This invariably drive the
training of the model biased towards those majority classes.
In order to address this issue, we take 2 approaches: (1) We
assigned a weight penalty ( number of total training samples /
number of of each class) on the predicted probability of each
class. (2) We force to balance the number of training samples
of each class to 3010. As for the classes which already have
more than 3010 sample, we randomly select a subset of 3010
samples; As for the classes which are short of 3010 samples,
we augment the number of samples by adjusting the tempo
and speed of the recordings.

3. FEATURE REPRESENTATIONS

We perform experiments on 3 types of features—standard
Mel-frequency cepstral coefficients (MFCC), log-Mel spec-
trograms and pre-trained embeddings extracted from a deep
convolutional network.

3.1. MFCC Features

We take 23 Mel-frequency (excluding the Oth) cepstral coef-
ficients over window length 20 ms. We augment the feature
with first and second order differences using 60 ms window,
resulting in a 61-dimension vector.

3.2. Log-Mel Spectrogram Images

Spectrogram images were generated over different window
lengths based on individual models. We use a frame size
of 25ms with 10ms shift in the short-time Fourier transform
and integrate the power spectrogram into 64 mel-spaced fre-
quency bins. A log-transform is then applied to the power
spectrogram to generate the spectrogram images.

3.3. Audio Embeddings

Similar to [8] we generate audio embeddings by training a
CNN to give frame-wise predictions of the clip label. The out-
puts from the penultimate layer of the CNN are then extracted
and used as audio embeddings. We use the first three con-
volutional groups from VGG-16 [9] and two fully-connected
hidden layers of size 1024 and 512 for the embedding CNN.
Batch normalization is added after each convolutional layer.
The final embedding size is 512.

Since frame-wise training of the instances results in the
data being badly labeled the final model selection of the
embedding CNN is crucial in generating meaningful embed-
dings. We use the maximum of frame-wise predictions as the
predicted clip label and evaluate the embedding CNN at the
clip-level using held-out validation data.

4. MULTIPLE INSTANCE LEARNING

4.1. MIL Framework

The task of detecting sound events using weakly labeled train-
ing data can be described as a multiple instance learning prob-
lem. In MIL, labels are assigned to bags of instances without
explicitly specifying the relevance of the label to individual
instances. All that is known is one or more instances within
the bag contribute to the bag label. Applying this framework
to our task, we view each YouTube audio clip as a bag of
instances B; = {x;;} where each instance x;; is an audio
segment j of shorter duration. We then assign all the labels of
the clip to the bag so that each bag has the label Y; = {y;,}
where y;,, indicates the presence of sound event n. The goal
of the MIL problem is then to classify labels of unseen bags
given only the bag and label pairs (B;,Y;) as training data.
In our implementation we generate the instances by seg-
menting the original YouTube clip into non-overlapping 1-
second segments. We calculate the log-mel spectrogram of
each segment as well as its first delta and use these as input



features to our proposed MIL framework using neural net-
works.

4.2. MIL using Neural Networks

Since each instance is a 64 by 100 log-mel spectrogram im-
age we employ convolutional neural networks to handle such
large dimensional input. We use the first two conv groups
from VGG-16 [9] as the feature extraction layers and add two
fully-connected layers of size 3072 and 1024. As this task is a
multi-label problem we use a sigmoid layer as the output. To
obtain a prediction for the entire bag we take the maximum
over all instances for each class using a max pooling layer.
That is

Y} = {max f(xi;)n}
J
where f(x;;), is the CNN output for class n on instance j.

During training we use cross entropy as the objective
function and share all weights of the CNN for each instance.
Figure 1 shows the architecture of the proposed MIL frame-
work using CNN.
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Fig. 1. Architecture of MIL using CNN.

Our model infers that for a certain class, the highest scor-
ing instances are most important and contribute directly to
the corresponding bag label. The training of the neural net-
work to identify these important instances is an expectation
maximization (EM) approach. However there are two pos-
sible issues which may result from this model. The first is
that as with most EM methods, system performance highly
depends on the initialization point. With a bad initialization
point the model chooses the wrong instance as being indica-
tive of the class label and optimizes on irrelevant input. These
types of errors would be hard to recover from if there is high

variation for each individual sound event. A second issue is
that by using a max pooling layer over all instances back-
propagation will only propagate through the maximum scor-
ing instance. This may result in some instances being ignored
for most of the training. While this focus on relevant instances
only is the central idea of MIL it greatly reduces robustness
to noise which occurs intermittently in the audio. Therefore
we propose the use of audio embeddings to handle the above
issues. By using audio embeddings as features we postulate
that sound events as well as noise conditions can be better
represented which can improve the performance of the MIL
framework.

The final MIL system is similar in architecture to the MIL-
CNN but uses audio embeddings as features for each instance.
In addition, the convolutional layers are replaced with fully-
connected layers as we no longer deal with images. The best
system has four hidden layers using relu activation function
and layer sizes 512, 512, 256 and 128.

5. EXPERIMENTAL RESULTS

The best Fl-score achieved by the MIL system using CNN
(MIL-CNN) on a two-fold cross-validation setup was 22.4%.
However by using audio embeddings as features and only
a DNN as classifier (MIL-DNN) the performance improved
to 28.7% which is 15.6 percentage points above the official
baseline. Using an ensemble of models with different hyper-
parameters the F1-score further improved to 31.1%. For the
ensemble we used per-class weighted voting based on valida-
tion accuracy. Table 2 shows the performance of the different
models.

Model \ Precision Recall F1-Score
Official Baseline 12.2% 14.1% 13.1%
MIL-CNN 19.6% 26.1% 22.4%
MIL-DNN w/ Embed. 22.0% 41.3% 28.7%
Ensemble 28.6% 46.0%  35.3%

Table 2. F1-Score on Testing Set for different models.

6. CONCLUSION

In this work we explored methods of training models for
large-scale sound event detection using weakly-supervised
data and proposed a multiple instance learning framework
using deep neural networks. We showed that by using au-
dio embeddings pre-trained on all the data we can achieve
higher performance with a simple DNN model in the MIL
framework. The audio embeddings were extracted from a
CNN trained to give frame-wise predictions for the weakly
labeled data. While the performance of this CNN is poor, the
embeddings generated by this model can be used as features
to drastically improve performance in a MIL framework. We
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Fig. 2. Confusion matrix for the proposed MIL system.

postulate that audio embeddings map data into an acoustically
meaningful high-dimensional space which is more indicative

of

the sound events. However, we also observed that selec-

tion of the embedding model is pivotal in the final system
performance. We expect that with better model selection and
embedding generation the MIL framework can obtain much
higher performance.
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