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ABSTRACT
This report describes our contribution to the 2017 Detection and
Classification of Acoustic Scenes and Events (DCASE) challenge.
We investigated two approaches for the acoustic scene classifica-
tion task. Firstly, we used a combination of features in the time
and frequency domain and a hybrid Support Vector Machines -
Hidden Markov Model (SVM-HMM) classifier to achieve an av-
erage accuracy over 4-folds of 80.9% on the development dataset
and 61.0% on the evaluation dataset. Secondly, by exploiting data-
augmentation techniques and using the whole segment (as opposed
to splitting into sub-sequences) as an input, the accuracy of our
CNN system was boosted to 95.9%. However, due to the small
number of kernels used for the CNN and a failure of capturing the
global information of the audio signals, it achieved an accuracy of
49.5% on the evaluation dataset. Our two approaches outperformed
the DCASE baseline method, which uses log-mel band energies for
feature extraction and a Multi-Layer Perceptron (MLP) to achieve
an average accuracy over 4-folds of 74.8%.

Index Terms— Acoustic scene classification, feature extrac-
tion, deep learning, spectral features, data augmentation

1. INTRODUCTION

Environmental sounds hold a large amount of information from our
everyday environment. Sounds can be captured unobtrusevily with
the help of mobile phones (MEMS microphones) or microphones
(Soundman OKM II Klassik/studio A3) [1].

The process of acoustic scene classification involves the extrac-
tion of features from sound and the use of these features to identify
the class of the scene.

Over the last few years, many researchers have worked on
acoustic scene classification, by recognizing single events in mono-
phonic recordings [2] and multiple concurrent events in polyphonic
recordings [3]. Different approaches to feature extraction have been
introduced [4], data augmentation techniques [5], use of hybrid
classifiers [6] and neural networks [7] and finally comparisons be-
tween well-known classifiers and deep learning models using public
datasets [8]. However, it must be noted that the problem of audio-
based event recognition remains a hard task. This is because fea-
tures and classifiers that work extremely well for a specific dataset
may fail for another.

In this report we present two approaches for acoustic scene clas-
sification using the DCASE 2017 development dataset for training

and validation and the unlabeled DCASE 2017 evaluation dataset
for testing. Our first approach combines time and frequency do-
main features, applies statistical analysis for dimensionality reduc-
tion, and uses a hybrid SVM-HMM for classification. Our second
approach uses a CNN for classification and exploits data augmen-
tation techniques. It differs from other CNN-based methods [9, 10]
first, in that we feed the whole segment as input to the network (as
opposed to splitting it in sub-sequences) and second, in that we ap-
ply max pooling to both dimensions of the input (i.e. both time
and frequency). By doing that, we reduce the dimensionality of
the input in a more uniform manner, thus preserving more of the
segment’s spatio-temporal structure, yielding more salient features
with each consecutive convolutional-max pooling operation.

The remainder of the report is organized as follows. Chapter
2 describes the steps in acoustic scene classification. Chapter 3
presents the first approach using the SVM-HMM classifier and the
results obtained. Chapter 4 describes the CNN model and its per-
formance. Finally, chapter 5 concludes the report.

2. ACOUSTIC SCENE CLASSIFICATION FRAMEWORK
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Figure 1: Typical Acoustic Scene Classification system.

Fig. 1 shows a typical Acoustic Scene Classification (ASC) sys-
tem and its main components. The detection module first segments
of the sound events from the continuous audio signal. Then features
are extracted to characterize the acoustic information. Finally, clas-
sification matches the unknown features with an acoustic model,
learnt during a training phase, to output a label for the segmented
sound event.

The Audio Input Signal collection is the first step in the pro-
cess. This step depends on the corresponding classification task.
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For instance, in handwriting recognition, this step involves splitting
each sentence into separate words and letters and performing other
initial tasks. For sound recognition, this step involves capturing a
sound from the environment and loading it into a computer. This
task is typically performed using a microphone. In addition, a com-
puter converts the analog signal to the digital format via sampling
and quantization.

Feature Extraction is the second step in the process. Feature
extraction involves selecting pieces of the input data that uniquely
characterize that information. The choice of features depends on
the application and it is based on the belief of which feature most
accurately characterizes the sound.

All these levels of understanding should be combined to pro-
duce a system that is able to extract the best features. For example,
a speech recognition system could use statistical techniques to iden-
tify when speech is passed into a microphone (speech/non-speech
detection). Syntactical techniques could then split the speech into
separate words. Each word could then be recognized and then a
semantic technique could be used to interpret each word using a
dictionary.

Classification is the third step in the process. For sound recog-
nition, many techniques have been used, including Hidden Markov
Models, Neural Networks and Reference Model Databases (as used
with Dynamic Time Wrapping) [11]. All of these techniques use
a training/testing paradigm. Training gives the system a series of
examples of a particular item, so the system can learn the general
characteristics of this item. Then, during testing, the system can
identify the class of the item being tested.

However, classification faces one challenge. It is important to
ensure that the testing and the training sets are recorded in the same
conditions in order to get optimum results. In an analysis of training
and testing techniques for speech recognition, Murthy, et al. [12]
explains how training data must be collected from within a variety
of different environments to make sure that a representative set of
training data is stored in the database. They use of a filter bank to
remove erroneous environmental sounds from the sound sample to
ensure that these do not affect classification. Hence, robust recogni-
tion techniques are most useful if noise and other factors affect the
training data.

3. PROPOSED SVM-HMM SYSTEM

In this section we describe the hybrid SVM-HMM system that was
implemented using the baseline code that was provided by the orga-
nizers. We have used well-known features from the field of speech
recognition and previous works in environmental sound classifica-
tion.

3.1. Feature Extraction

In the feature extraction phase all audio files are transformed into
the frequency domain through a 2048-sample Short-Time Fourier
Transform (STFT) with 50% overlap, in order to avoid loss of in-
formation. Each frame has a window size of 40 ms with a 20 ms
hop size from the next one. In our approach, we convert the 24-bit
depth stereo audio recordings to mono, then the spectrum is divided
into 40 mel-spaced bands, and the following features are extracted
for each band: Spectral Rolloff (SR), Spectral Centroid (SC), Mel-
Frequency Cepstral Coefficients (MFCC) (static, first and second
order derivatives) and Zero-Crossing Rate (ZCR).

For each mel band there are 12 cepstral coefficients + 1 energy
coefficient, 12 delta cepstral coefficients + 1 delta energy coefficient
and 12 double delta cepstral coefficients + 1 double delta energy
coefficient; making a total of 39 MFCC features.

Taking the average ZCR gives a reasonable way to estimate the
frequency of a sine wave. ZCR was important in recordings such as
the cafe/restaurant, grocery store, metro station, tram and train, in
order to separate the speech from the non-speech components.

SC and SR are defined based on the magnitude spectrum of the
STFT. They measure the average frequency weighted by amplitude
of a spectrum as well as the frequency below which 90% (in our
case) of the magnitude distribution is concentrated.

Statistics such as the mean, variance, skewness, first and sec-
ond derivatives are computed to aggregate all time frames into a
smaller set of values representing each of features for every mel-
band. One of the main problems is that whenever there is a large
dataset, using a large number of features can slow down the train-
ing process [13]. We used the Sequential Backward Selection (SBS)
[14], which sequentially constructs classifiers for each subset of fea-
tures by removing one feature at a time from the previous set and
finally outputs the classification error rate. The combination of all
the features along with SBS increased the classification accuracy in
4-folds from 77.1% to 80.9%

Table 1 shows a comparison between our hybrid SVM-HMM
approach, the DCASE2017 baseline based on Gaussian Mixture
Model (GMM), using the development dataset, and the performance
of our SVM-HMM system with the evaluation dataset.

Table 1: Performance comparison (averaged over 4-folds) between
the DCASE2017 baseline based on GMM and our hybrid SVM-
HMM approach

Class

Baseline GMM
w/ MFCC features

(%)
(development dataset)

Our approach SVM-HMM
w/ MFCC,

ZCR, SR. SC features
(%)

(development dataset)

Our approach SVM-HMM
w/ MFCC,

ZCR, SR. SC features
(%)

(evaluation dataset)
Beach 75.0 78.8 23.1
Bus 84.3 90.1 42.6

Cafe/Restaurant 81.7 68.3 58.3
Car 91.0 94.2 66.7

City center 91.0 91.3 77.8
Forest path 73.4 85.6 86.1

Grocery store 67.9 80.8 64.8
Home 71.4 74.5 94.4

Library 63.5 65.7 39.8
Metro station 81.4 89.1 92.6

Office 97.1 99.0 54.6
Park 39.1 59.0 20.4

Residential area 74.7 79.8 72.2
Train 41.0 63.8 81.5
Tram 79.2 85.6 39.8

Average 74.1 80.9 61.0

3.2. Classification

The development dataset is split by the organizers in 4-folds each
containing 3510 training recordings and 1170 testing recordings
(75/25 split). For the training, we use the features that were men-
tioned in the previous section as an input to the HMM. Then, the
most probable model is associated with every sequence which needs
to be classified. The HMM output, which can be considered as a fur-
ther refinement of the HMM input features is in turn fed to the SVM
classifier in the testing phase, as it was originally proposed by Bisio
et al. [16] for gender-driven emotion recognition. For the SVM, we
used the Radial-Basis Function (RBF) kernel and after performing
grid search, we found that the best parameters were σ = 0.1 and C
= 100. The parameter σ of the RBF kernel handles the non-linear
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Figure 2: Block diagram of a Convolutional Neural Network.

classification and is considered to be a similarity measure between
two points. C is the cost of classification.

Fig.3 shows the Receiver Operating Characteristics (ROC)
curves of the SVM-HMM model. The system was not able to
create a good model for classes such as: library, park, train and
cafe/restaurant.
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Figure 3: ROC curves of the SVM-HMM model. Classes 0-14 rep-
resent the alphabetical order of the classes from the challenge.

4. PROPOSED CNN SYSTEM

In this section we describe the CNN system that was implemented in
Python using Librosa [17] for feature extraction and Keras [18] for
the development of the model.The network was trained on NVIDIA
GeForce GTX 1080 Ti and Tesla K40M GPUs.

4.1. Data augmentation

Environmental audio recordings have different temporal properties.
Therefore, we need to make sure that we have captured all the sig-
nificant information of the signal in both the time and frequency do-
main. Most environmental audio signals have non-stationary noise,
which is often time-varying correlated and non-Gaussian.

Based on previous research [5, 19], data augmentation proved
to significantly improve the total performance of the classification

system. In our approach we produced two additional augmented
recordings from the original ones. Hence the total training audio
files of each fold were increased from 3510 to 10530 and the testing
from 1170 to 3510. For the first recording we added Gaussian noise
over the 10 seconds of the recording; hence it has an average time
domain value of zero. This allowed us to train our system better,
since the evaluation recordings would also introduce various noises
(e.g. kids playing on the beach). For the second recording we re-
sampled the original signal from 44.1 kHz to 16 kHz. We kept the
same length as the original recording and padded with zeros where
necessary. We found that a lot of information at around 11 kHz was
necessary for classes such as ”beach” where there was a lot of noise
from the wind and the sea waves.

4.2. Feature Extraction

All the recordings were converted into mono channels. In this ap-
proach, we use the mel-spectrogram with 128 bins which is a suffi-
cient size to keep spectral characteristics while greatly reduces the
feature dimension. Each frame has a window size of 40 ms with a
20 ms hop size from the next one. We normalized the values before
using them as an input into the CNN network by subtracting the
mean and dividing by the standard deviation.

4.3. CNN description

Our network architecture consists of 4 convolutional layers (Fig.2).
In detail, the first layer performs convolutions over the spectrogram
of the input segment, using 3x3 kernels. The output is fed to a
second convolutional layer which is identical to the first. A 2x2
max pooling operation, then, follows the second layer and the sub-
sampled feature maps are fed to two consecutive convolutional lay-
ers, each followed by max pooling operations. Each convolution
operation is followed by batch normalization [20] of its outputs, be-
fore the element-wise application of the ELU activation function
[21] to facilitate training and improve convergence time. After each
max pooling operation, we apply dropout [22] with an input dropout
rate of 0.2. The number of kernels in all convolutional layers is 5.

The resulting feature maps of the consecutive convolution-max
pooling operations are then fed as input to a fully-connected layer
with 128 logistic sigmoid units to which we also apply dropout with
a rate of 0.2, followed by the output layer which computes the soft-
max function. Classification is, then, obtained through hard assign-
ment of the normalized output of the softmax function. I.e.:

c = argmax
i
yi, for i = 1, . . . , n (1)
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Table 2: Comparison of recognition accuracy between the proposed system and the second baseline system based on Log-mel band energies
and MLP for the DCASE 2017 dataset averaged over 4-folds

Class

Baseline
Log-mel band energies

MLP
(%)

(development dataset)

Our System (with data augmentation)
Log-mel spectrogram

CNN
(%)

(development dataset)

Our System (with data augmentation)
Log-mel spectrogram

CNN
(%)

(evaluation dataset)
Beach 75.3 97.8 35.2
Bus 71.8 92.3 23.1
Cafe/Restaurant 57.7 96.2 58.3
Car 97.1 97.4 63.0
City center 90.7 99.6 90.7
Forest path 79.5 100.0 90.7
Grocery store 58.7 99.6 57.4
Home 68.6 98.3 61.1
Library 57.1 95.3 20.4
Metro station 91.7 92.3 38.0
Office 99.7 100.0 53.7
Park 70.2 90.6 25.9
Residential area 64.1 90.2 45.4
Train 58.0 93.2 59.3
Tram 81.7 97.0 48.1
Average 74.8 95.9 49.5

yi =
expxi∑N
j=1 expxj

(2)

where, c is the argmax-index position of each row (class) i in
the set 1, ..., N for which yi is maximum and x is the net input.
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Figure 4: ROC curves of the final CNN model. Classes 0-14 repre-
sent the alphabetical order of the classes from the challenge.

Fig. 4 shows the ROC curves of our CNN model. It proves that
we have a good model, as the area under the ROC curve (AUC) is
approximately 0.99. Table 2 compares the classification accuracies
between the baseline model and the proposed CNN model.

5. CONCLUSIONS

We presented two systems that use environmental sounds for event
detection in an indoor or an outdoor environment. In order to further
evaluate the performance of the proposed systems we have to test it
extensively with more public datasets (i.e. UrbanSounds 8K, ESC-
50, Chime Home, etc.)

Our system severely underperformed in the evaluation set, with
performance dropping by almost 50%. We attribute this to a combi-
nation of inadequate feature extraction and model capacity. While
our extracted features were adequate enough to encode information
present in the development set (and thus lead to good development
held out performance) they seem to have captured mostly local in-
formation, or at least failed to encapsulate the global structure hid-
den in the data. This, coupled with the relatively small capacity of
our model (only 5 convolutional kernels) played a significant role
in the worsening of the model’s performance in the evaluation set.

We plan to explore statistical feature selection with Analysis Of
Variance(ANOVA) and SBS for the CNN and compare the perfor-
mance with the addition of bidirectional Long Short-Term Memory
(LSTM) layers. The data augmentation technique used for the CNN
will be tested with well-known classifiers. Furthermore, we will use
a Variational Auto-Encoder data augmentation method, since it has
proven to create robust models in the field of speech recognition
[23]. Finally, tests with binaural recordings will be conducted to
evaluate the performance.
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