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ABSTRACT

In this study, we explored DNN-based audio scene classification
systems with dual input features. Dual input features take advan-
tage of simultaneously utilizing two features with different levels
of abstraction as inputs: a frame-level mel-filterbank feature and
segment-level identity vector. A new fine-tune cost that solves the
drawback of dual input features was developed, as well as a data
duplication method that enables DNN to clearly discriminate fre-
quently misclassified classes. Combining the proposed methods
with the latest DNN techniques such as residual learning achieved
a fold-wise accuracy of 95.9% for the validation set and 70.6% for
the evaluation set provided by the Detection and Classification of
Acoustic Scenes and Events community.

Index Terms— audio scene classification, DNN, dual input
feature, balancing cost, data duplication, residual learning

1. INTRODUCTION

Vast amounts of information can be acquired from an audio seg-
ment, including the surrounding environment. Audio scene classifi-
cation is a task of classifying the surrounding environment based on
a given audio segment. Various approaches have been explored for
successful audio scene classification. For example, non-negative
matrix factorization (NMF) [1], Gaussian mixture model (GMM)
[2] were used in the 2016 Detection and Classification of Acoustic
Scenes and Events (DCASE) competition.

In this study, we concentrated on exploiting deep learning-
based systems. Recent advances in deep learning have made deep
neural networks (DNNs) a state-of-the-art system for many tasks
[3], [4]. We exploited approaches used in other tasks, such as image
recognition and speaker verification. For example, residual network
architecture [5] is a state-of-the-art system for image recognition.
The identity vector (i-vector) [6], which composes state-of-the-art
systems in speaker verification, is extracted from an audio segment
and used as one of the two input features for the DNN classifier.
The widely used mel-filterbank feature is also used simultaneously
as the other input feature.

The remainder of this paper is organized as follows. Section
2 describes the proposed techniques. Subsection 2.1 describes the
baseline, and the other subsections describe the methods that are
stacked to compose the systems submitted to the 2017 DCASE chal-
lenge. Section 3 describes the experimental settings and configura-
tions, along with the results and analysis.

The first and second author in this paper have the same contribution.
† Corresponding author

2. SYSTEM DESCRIPTION

The methods presented in this section were separately or simulta-
neously applied to our DNN baseline to compose four submitted
systems. System 1 with dual input features was our baseline. The
methods in each subsection were stacked to compose Systems 2 to
4. The newly defined balancing cost was applied to System 1 to
create System 2. Stochastic data duplication based on the classifi-
cation accuracy of the development set was added to System 2 to
create System 3. The DNN architecture of System 3 was changed
from multi-layer perceptron (MLP) to a residual network to create
System 4 [5].

2.1. Dual Input Features (System 1)

Two different features were utilized as inputs for the DNN: the mel-
filterbank feature (frame-level) and the i-vector (segment-level).
Description about the mel-filterbank feature is omitted because it
is a widely used method.

The i-vector (identity vector) [6], is an segment-level feature
and represents the core identity of an audio segment. Thus, a single
vector is extracted from each audio segment regardless of its length.
One i-vector and several mel-filterbank features extracted from one
audio segment were connected and used as the DNN input. In this
case, one i-vector is duplicated and connected to the mel-filterbank
features extracted in frame unit. Figure 1 shows an overview of
the dual feature-based system. Although i-vectors were originally
designed to represent the identity of a speaker, recent research has
shown that they can be used for tasks related to scene classification
[7]. Thus, we utilized i-vectors for audio scene classification.

Figure 1: Illustration of mel-filterbank features and i-vectors being
simultaneously used as input to the DNN.
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In this study, the mel-filterbank featurse and i-vectors were both
used as inputs for the DNN classifier with the expectation of syn-
ergy between two features with different levels of abstraction: frame
and segment, respectively. However, in our early experiments with
the DCASE 2016 challenge dataset, the classification accuracy of
the system using dual input features (84.1%) was almost the same
as that of a system trained only with i-vectors (83.8%).

A performance gain could be achieved by pre-training the DNN
classifier with only the mel-filterbank features and then fine-tuning
it with both input features. The mel-filterbank feature was pre-
trained by zero-masking the i-vector features and fine-tuning the
network a certain number of times while maintaining the DNN ar-
chitecture. It was possible to improve the scene classification accu-
racy of the DNN by applying the pre-training technique to System
1. However, applying the pre-training technique requires a large
amount of training time and knowledge of the characteristics of in-
put features.

2.2. Balancing Cost (System 2)

We discovered an unexpected characteristic of the DNN by visual-
izing the weight matrix between the input layer and the first hidden
layer. The DNN tended to utilize only the i-vector and neglect the
mel-filterbank features when the two features were input simulta-
neously. The absolute values for the weights of the network con-
necting the mel-filterbank features to the first hidden layer were al-
most zero. In contrast, the absolute value for the weight of the net-
work connecting the i-vector to the first hidden layer was relatively
high. We hypothesized that this phenomenon occurred because the
i-vector, which is an segment-level feature, was easier to utilize. In
contrast, the mel-filterbank feature is a frame-level feature and was
harder to utilize.

To solve the problem of the network neglecting the mel-
filterbank features, we added BF1 and BF2 to the network’s nega-
tive log likelihood (NLL) fine-tune cost in (1) with α and β as scale
factors. Equation (2) corresponds to the average effectiveness of
one node from the input feature to all nodes in the first hidden layer.
Here, Wx,y means the weight connections between xth node in the
input layer and yth node in the first hidden layer where X , Y refer
to the number of nodes in the input layer and the first hidden layer,
respectively. Thus, BF1 in (3) represents the variance of influence
for each element in the input layer. A lower BF1 means that the
input feature’s elements are evenly utilized. By adding BF1 to the
objective function, each element of the input feature is forced to
have similar effectiveness on the next layer.

cost = NLL+ α ∗BF1(W ) + β ∗BF2(W ) (1)

f1(Wx) =
1

Y

Y∑
y=1

|Wx,y| (2)

BF1(W ) = V ar(f1(W1), f1(W2), ..., f1(WX)) (3)
However, the easiest way to make BF1 equal to zero is by con-

verging all weights to zero. To prevent this, BF2 in (5) was in-
troduced. For every mini-batch, the average scale of the weight
matrix , W cur , is compared with the scale of initial weight matrix,
W init. By applying ReLU function, BF2 is active only if the scale
of weight matrix has decreased. Thus, BF2 prevents the weights
from converging to zero.

f2(W ) =
1

X

1

Y

X∑
x=1

Y∑
y=1

Wx,y (4)

BF2(W ) = ReLU(f2(W
init)− f2(W cur)) (5)

With the added terms to balance mel-filterbank features and i-
vector, the two input features were evenly used judging by the ab-
solute value of the weight matrix.

2.3. Stochastic data duplication (System 3)

A confusion matrix was used to analyze the performance of the sub-
systems. A combination of three channels that we divided and four
cross-validation folds provided by the DCASE community gener-
ates 12 subsystems. Details regarding the channels are addressed
in subsection 2.5. Figure 2 shows the confusion matrix generated
by 12 subsystems from the classification experiment. Diagonal ele-
ments for the confusion matrix are omitted in Figure 2 for better vi-
sualization of misclassified audio segments. The results confirmed
that the misclassification of each subsystem was concentrated in
few classes unique to each subsystem. Thus, we devised a simple
method to emphasize specific audio scenes in the training phase.

The suggested method (i.e., stochastic data duplication) dupli-
cates each scene’s train dataset proportional to the number of mis-
classified audio segments. It was applied after every epoch during
the training phase based on class-wise accuracy with the validation
set. Equations (5) and (6) describes how stochastic data duplication
is conducted. C corresponds to the confusion matrix. Cj ,k is the
number of misclassified audio segments where scene k was clas-
sified as scene j. Ek refers to the number of misclassified audio
segments for scene k. In (6), Ak, between 0 and 1, is the proportion
of data from scene k that is duplicated where K refers to the set of
audio scenes.

Ek =
∑
j

Cj ,k − Ck,k (6)

Ak =
Ek∑K
i Ei

(7)

Strictly speaking in terms of validation accuracy, this approach
may not be appropriate because validation result itself is exploited.
Thus, the classification accuracy derived from the validation set was
described only for reference. However, from the perspective of the
actual DCASE 2017 challenge, the validation set is part of the de-
velopment set. Therefore, the evaluation result with stochastic data
duplication applied is valid.

2.4. Residual learning (System 4)

The number of hidden layers has always been a core hyper-
parameter in deep learning with a major effect on system perfor-
mance. A residual network was proposed in [5] to resolve this prob-
lem. As illustrated on the right side of Figure 3, the residual network
is composed of several residual blocks. Each residual block has an
identity mapping connection. In identity mapping [8], an input x is
directly mapped to the output, and F (x,W ) calculate the residual
only, where W is the weight matrix. Based on the identity map-
ping connection, the input can easily be identically mapped to the
output by making the weight matrix into zeros. Thus, as far as the
hardware supports it, higher performance is expected with deeper
networks because unneeded residual blocks are trained for identity
mappings.

y = F (x,W ) + x (8)
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Figure 2: Confusion matrices for all channels and folds.

Figure 3: Network architectures. Left: DNN of 5 fully-connected
hidden layers. Right: Residual network of 42 hidden layers (20
blocks + 2 fully-connected).

In [8], a different residual block composition was proposed
where the sequence of weight operation, batch normalization, and
then the activation function is replaced by a sequential implemen-
tation of batch normalization, activation function and then weight
summation. The new form, which is called full pre-activation, can
preserve clean information paths and gives a performance gain.
This technique is adopted for System 4 by changing the network
of System 3 to a 42-layer MLP.

2.5. Score-level ensemble

Audio segments from the DCASE 2017 challenge were provided at
a 44.1kHz sampling rate and 24-bit resolution, in stereo. In many
other studies, stereo audio is normally converted to mono audio by
averaging two channels at the sample-level before processing. How-
ever based on former studies for the DCASE 2016 challenge [9], all
systems in this study, including System 1 (baseline), extracted three
different channels from one audio segment: the left and right chan-
nels of the stereo audio segment and the converted mono. Then,
feature extraction and DNN classifier training were conducted se-
quentially for each channel. During the verification and evaluation
stage, we use the ensemble of the decision scores of the three inde-
pendent systems to make the final decision for an audio segment.

The results showed that a performance gain was achieved when
ensemble was conducted on networks of different channels. Table 1
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shows the classification accuracy of individual channels and when
ensemble of the three channels is used.

Table 1: Classification accuracy(%) of individual channels and
score-level ensemble network using the dual input feature model
(System 1).

Channel Fold 1 Fold 2 Fold 3 Fold 4 Average
converted 84.8 81.8 80.9 83.7 82.8

left 82.2 81.9 81.4 82.7 82.0
right 83.5 81.6 82.3 79.8 81.8

Ensemble 86.2 86.1 84.3 85.2 85.5

3. EXPERIMENTS AND RESULTS

The systems were implemented with Theano [10], [11], which is
a Python library for deep learning. The open-source toolkit Kaldi
[12] was used to extract i-vectors.

3.1. Feature Configuration

40-dimensional mel-filterbank feature was extracted by using 25ms
windows with 10ms shift, following [13]. Linear discriminant anal-
ysis (LDA) [14] was used to reduce the dimension of mel-filterbank
features to 10. The total feature of a frame is the concatenation of
the mel-filterbank feature vectors of the frame and 22 frames before
and after the current frame and an i-vector of the segment.

A diagonal GMM with 1024 components is trained with 60-
dimensional mel-frequency cepstral coefficients, and a total vari-
ability matrix that can extract an i-vector of 200 dimensions was
trained for 10 iterations. A 450-dimensional mel-filterbank features
(10 × (22 + 1 + 22)) and a 200-dimensional i-vector were concate-
nated to form 650-dimensional input feature for the DNN classifier.

3.2. Network Configuration

For Systems 1 to 3, MLP has four hidden layers, each having 512
nodes. For System 4, the MLP has 42 hidden layers, each having
512 nodes with a residual connection for every two layers.

The L-2 weight decay [15] with a lambda of 10−4 is applied.
Dropout [16] was applied to all systems with 20% dropout at the
first hidden layer and 50% for the rest of the hidden layers except
for System 4. The exclusion of dropout for System 4 follows the
practices in [5], [8]. Batch normalization [17] and learning rate
decay following implementation in [18] were also utilized. α and β
in our balancing cost were set to 1000 and 100 respectively.

For a residual network, the first and last hidden layers are nor-
mal fully-connected layers without a residual connection. In ad-
dition, when full pre-activation is applied, the batch normalization
and activation functions should be excluded for the first layer in the
first residual block. This is to avoid duplicate application of the
batch normalization and activation function.

3.3. Results and Analysis

Table 2 presents the validation results for the four-fold cross valida-
tion of our submitted systems.

In System 2, the balancing cost reduced the classification accu-
racy by 0.5%p compared with System 1. However, the balancing

cost does not require pre-training with only mel-filterbank features.
Thus, it can reduce the complexity of the system.

Applying stochastic data duplication led to a recognizable per-
formance gain for all folds except fold 1. However, because the
results of the validation set is utilized, strictly speaking in the per-
spective of validation set, this may not be considered a fair exper-
iment. The performances of Systems 3 and 4 with validation set
are therefore presented for reference only. The actual performance
gain from stochastic data duplication in the evaluation is addressed
in Table 2.

Table 2: Classification accuracy(%) of 4-fold average on validation
set and evaluation set.

System # Validation set Evaluation set
System 1 85.5 67.0
System 2 85.1 66.2
System 3 95.5 67.3
System 4 95.9 70.6

• System 1: dual input feature
• System 2: dual input feature + balancing cost
• System 3: dual input feature + balancing cost +

stochastic data duplication
• System 4: dual input feature + balancing cost +

stochastic data duplication + residual network

4. CONCLUSION

In this paper, the latest DNN-based approaches was evaluated by ap-
plication to audio scene classification with proposed approaches ap-
plied. System 1(baseline), which used dual input features, showed
67.0% classification accuracy with the evaluation dataset, 6.0%p
higher than the classification accuracy of the DCASE baseline sys-
tem. Necessity of pre-training was resolved with balancing cost in
System 2. A technique for further training the DNN for frequently
misclassified classes was applied to System 3. System 4 which ap-
plied proposed approaches in Systems 1 through 3 and residual net-
work achieved a classification accuracy of 70.6%, showing that the
proposed approaches are valid.
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